1
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025:10.1038/s41423-025-01284-9. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Hong S, Wang H, Qiao L. The Role of miR-144 in Inflammatory Diseases: A Review. Immun Inflamm Dis 2025; 13:e70172. [PMID: 40067024 PMCID: PMC11894823 DOI: 10.1002/iid3.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Inflammation, often caused by various stimuli, is a common response to tissue homeostasis disruptions and is considered a key driver of many pathological conditions. MicroRNA-144 (miR-144) has emerged as a critical regulator in inflammatory diseases, with its dysregulation implicated in various pathological conditions. Understanding its role and mechanisms is essential for developing therapeutic strategies. OBJECTIVE This article aimed to evaluate the role of miR-144 in inflammatory diseases through a literature review. METHODS Electronic databases including PubMed, Web of Science, Springer Link, China Knowledge Resource Integrated Database, and Wanfang Data were searched for relevant literature. The following keywords were used and combined differently according to the rules of the databases: "miR-144," "inflammation," "inflammatory," and "immune response." Studies investigating miR-144 in the context of inflammation were included. Data were extracted to assess miR-144's expression patterns and its association with disease severity and outcomes. RESULTS miR-144 was found to be differentially expressed in a range of inflammatory diseases, including sepsis, infectious diseases, respiratory diseases, cardiovascular diseases, digestive diseases, neuropsychiatric diseases, arthritis, and pregnancy complications. The expression patterns varied depending on the disease, with both upregulation and downregulation observed. miR-144 was implicated in the modulation of inflammatory responses through direct and indirect targeting of key proteins and pathways. The review also highlighted the potential of miR-144 as a diagnostic and prognostic biomarker. CONCLUSION miR-144 plays a significant role in the pathogenesis of inflammatory diseases and holds promise as a biomarker. Its expression patterns and regulatory mechanisms offer insights into disease processes and may guide future therapeutic strategies. However, further clinical studies are needed to validate miR-144's utility as a biomarker and to explore its therapeutic potential in a clinical setting.
Collapse
Affiliation(s)
- Shukun Hong
- Department of Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
- Clinical Research Center of Dongying Critical Care MedicineDongyingShandongChina
| | - Hongye Wang
- Department of Obstetrics and GynecologyShengli Oilfield Central HospitalDongyingShandongChina
| | - Lujun Qiao
- Department of Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
- Clinical Research Center of Dongying Critical Care MedicineDongyingShandongChina
| |
Collapse
|
3
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Jiao K, Lai Z, Cheng Q, Yang Z, Liao W, Liao Y, Long H, Sun R, Lang T, Shao L, Deng C, She Y. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117766. [PMID: 38266949 DOI: 10.1016/j.jep.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 μg·mL-1 and 4.72 μg·mL-1) neuronal protection being the strongest. Glycosides (4.72 μg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 μg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
Collapse
Affiliation(s)
- Keyan Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zili Lai
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qiaochu Cheng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengyu Yang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxin Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yanhao Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiting Sun
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Lang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan She
- Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Zhou P, Meng X, Nie Z, Wang H, Wang K, Du A, Lei Y. PTEN: an emerging target in rheumatoid arthritis? Cell Commun Signal 2024; 22:246. [PMID: 38671436 PMCID: PMC11046879 DOI: 10.1186/s12964-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical tumor suppressor protein that regulates various biological processes such as cell proliferation, apoptosis, and inflammatory responses by controlling the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT) signaling pathway. PTEN plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Loss of PTEN may contribute to survival, proliferation, and pro-inflammatory cytokine release of fibroblast-like synoviocytes (FLS). Also, persistent PI3K signaling increases myeloid cells' osteoclastic potential, enhancing localized bone destruction. Recent studies have shown that the expression of PTEN protein in the synovial lining of RA patients with aggressive FLS is minimal. Experimental upregulation of PTEN protein expression could reduce the damage caused by RA. Nonetheless, a complete comprehension of aberrant PTEN drives RA progression and its interactions with other crucial molecules remains elusive. This review is dedicated to promoting a thorough understanding of the signaling mechanisms of aberrant PTEN in RA and aims to furnish pertinent theoretical support for forthcoming endeavors in both basic and clinical research within this domain.
Collapse
Affiliation(s)
- Pan Zhou
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Xingwen Meng
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Zhimin Nie
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Hua Wang
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Kaijun Wang
- Nanjing Tongshifeng Hospital, Nanjing, Jiangsu Province, China
| | - Aihua Du
- Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, Henan Province, China
| | - Yu Lei
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Song R, Baker TL, Watters JJ, Kumar S. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci 2024; 25:1852. [PMID: 38339130 PMCID: PMC10856042 DOI: 10.3390/ijms25031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
7
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
8
|
Xiao Y, Zhang L. Mechanistic and therapeutic insights into the function of NLRP3 inflammasome in sterile arthritis. Front Immunol 2023; 14:1273174. [PMID: 37954594 PMCID: PMC10634342 DOI: 10.3389/fimmu.2023.1273174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The NLRP3 inflammasome, which belongs to the pyrin domain containing 3 family of NOD-like receptors, has a significant impact on both the innate and adaptive immune responses. Regulating host immune function and protecting against microbial invasion and cell damage, the NLRP3 inflammasome plays a crucial role. By triggering caspase-1, it facilitates the development of the inflammatory cytokines IL-1β and IL-18, and triggers cell pyroptosis, resulting in cell lysis and demise. Common sterile arthritis includes osteoarthritis (OA), rheumatoid arthritis (RA) and gouty arthritis (GA), all of which manifest as bone destruction and synovial inflammation in a complex inflammatory state, placing a significant medical burden on the families of patients and government agencies. In the past few years, there has been a growing interest in investigating the impact of cell pyroptosis on arthritis development, particularly the widespread occurrence of pyroptosis mediated by the NLRP3 inflammasome. The NLRP3 inflammasome's biological properties are briefly described in this review, along with the presentation of the fundamental processes of pyroptosis resulting from its activation. Furthermore, we provide a summary of the advancements made in studying the NLRP3 inflammasome in various forms of arthritis and enumerate the intervention approaches that target the NLRP3-mediated pyroptosis, either directly or indirectly. These discoveries lay the groundwork for future investigations on medications for arthritis, offering fresh approaches for the clinical identification and treatment of this condition.
Collapse
Affiliation(s)
- Yi Xiao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Orthopedics, Hangzhou Medical College, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Zhou Q, Li T, Fang G, Pang Y, Wang X. Bioactive Molecules against Rheumatoid Arthritis by Suppressing Pyroptosis. Pharmaceuticals (Basel) 2023; 16:952. [PMID: 37513864 PMCID: PMC10383892 DOI: 10.3390/ph16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis is an inflammatory disease, and pyroptosis is a form of death associated with an inflammatory response. Pyroptosis, which occurs in synovial and osteoblastic cells, can exacerbate the development of rheumatoid arthritis. The inhibition of pyroptosis of these cells can, therefore, clearly be used as a therapeutic strategy against rheumatoid arthritis. Here, we have summarized the current status of progress in the treatment of rheumatoid arthritis by targeting cellular pyroptosis. We have identified seven compounds, including a cyclic RNA, a microRNA, a peptide, and a cytokine (protein), that may influence the progression of rheumatoid arthritis by regulating the initiation of pyroptosis. All of these compounds have been shown to have anti-rheumatoid effects in vitro and/or in vivo and have the potential to be developed as anti-rheumatoid agents. These findings may help to accelerate the development of anti-rheumatoid arthritis drugs.
Collapse
Affiliation(s)
- Qian Zhou
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Tian Li
- School of Basic Medical Science, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Gang Fang
- School of Zhuang Medicine, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| |
Collapse
|
10
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
11
|
Zhang Y, Lv X, Fan Q, Chen F, Wan Z, Nibaruta J, Wang H, Wang X, Yuan Y, Guo W, Leng Y. miRNA155-5P participated in DDX3X targeted regulation of pyroptosis to attenuate renal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:3586-3597. [PMID: 37142295 PMCID: PMC10449305 DOI: 10.18632/aging.204692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Renal ischemia/reperfusion injury (IRI) induced pathological damage to renal microvessels and tubular epithelial cells through multiple factors. However, studies investigated whether miRNA155-5P targeted DDX3X to attenuate pyroptosis were scarce. RESULTS The expression of pyroptosis-related proteins (caspase-1, interleukin-1β (IL-1β), NOD-like receptor family pyrin domain containing 3 (NLRP3), and IL-18) were up-regulated in the IRI group. Additionally, miR-155-5p was higher in the IRI group comparing with the sham group. The DDX3X was inhibited by the miR-155-5p mimic more than in the other groups. DEAD-box Helicase 3 X-Linked (DDX3X), NLRP3, caspase-1, IL-1β, IL-18, LDH, and pyroptosis rates were higher in all H/R groups than in the control group. These indicators were higher in the miR-155-5p mimic group than in the H/R and the miR-155-5p mimic negative control (NC) group. CONCLUSIONS Current findings suggested that miR-155-5p decreased the inflammation involved in pyroptosis by downregulating the DDX3X/NLRP3/caspase-1 pathway. METHODS Using the models of IRI in mouse and the hypoxia-reoxygenation (H/R)-induced injury in human renal proximal tubular epithelial cells (HK-2 cells), we analyzed the changes in renal pathology and the expression of factors correlated with pyroptosis and DDX3X. Real-time reverse transcription polymerase chain reaction (RT-PCR) detected miRNAs and enzyme-linked immunosorbent assay (ELISA) was used to detect lactic dehydrogenase activity. The StarBase and luciferase assays examined the specific interplay of DDX3X and miRNA155-5P. In the IRI group, severe renal tissue damage, swelling, and inflammation were examined.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qian Fan
- Tianjin Eye Hospital and Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Nankai Eye Institute, Nankai University, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Janvier Nibaruta
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoxia Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Yuan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Wenwen Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yufang Leng
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
12
|
Anderson G, Almulla AF, Reiter RJ, Maes M. Redefining Autoimmune Disorders' Pathoetiology: Implications for Mood and Psychotic Disorders' Association with Neurodegenerative and Classical Autoimmune Disorders. Cells 2023; 12:cells12091237. [PMID: 37174637 PMCID: PMC10177037 DOI: 10.3390/cells12091237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Although previously restricted to a limited number of medical conditions, there is a growing appreciation that 'autoimmune' (or immune-mediated) processes are important aspects of a wide array of diverse medical conditions, including cancers, neurodegenerative diseases and psychiatric disorders. All of these classes of medical conditions are associated with alterations in mitochondrial function across an array of diverse cell types. Accumulating data indicate the presence of the mitochondrial melatonergic pathway in possibly all body cells, with important consequences for pathways crucial in driving CD8+ T cell and B-cell 'autoimmune'-linked processes. Melatonin suppression coupled with the upregulation of oxidative stress suppress PTEN-induced kinase 1 (PINK1)/parkin-driven mitophagy, raising the levels of the major histocompatibility complex (MHC)-1, which underpins the chemoattraction of CD8+ T cells and the activation of antibody-producing B-cells. Many factors and processes closely associated with autoimmunity, including gut microbiome/permeability, circadian rhythms, aging, the aryl hydrocarbon receptor, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) all interact with the mitochondrial melatonergic pathway. A number of future research directions and novel treatment implications are indicated for this wide collection of poorly conceptualized and treated medical presentations. It is proposed that the etiology of many 'autoimmune'/'immune-mediated' disorders should be conceptualized as significantly determined by mitochondrial dysregulation, with alterations in the mitochondrial melatonergic pathway being an important aspect of these pathoetiologies.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX 78229, USA
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Liu J, Jia S, Yang Y, Piao L, Wang Z, Jin Z, Bai L. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed Pharmacother 2023; 158:114118. [PMID: 36527845 DOI: 10.1016/j.biopha.2022.114118] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The production of metrnl, a novel adipomyokine, is induced upon exercise in adipose tissue and skeletal muscle. In this study, we investigated the anti-inflammatory and antipyroptotic effects of exercise-induced metrnl producted in rats in vitro and in vivo. Forty Sprague-Dawley rats were divided randomly into five groups: control (CG), osteoarthritis (OA) with sedentary lifestyle (OAG), OA with low intensity exercise (OAL), OA with moderate intensity exercise (OAM), and OA with high intensity exercise (OAH). The correlation between the level of metrnl and OA degree was detected using ELISA, X-ray imaging, histology, and immunohistochemistry in vivo. Primary chondrocytes were preincubated with recombinant metrnl before interleukin-1β administration to verify the anti-inflammatory and antipyroptotic effects of metrnl. Western blotting and quantitative reverse transcription (qRT)-PCR were used to evaluate the differences in protein and mRNA expression between groups, respectively. Reactive oxygen species (ROS) assay, immunofluorescence, transmission electron microscopy (TEM), and flow cytometry were used to evaluate morphological changes and pyroptosis in chondrocytes. In the moderate-intensity treadmill exercise group, the severity of OA showed maximum relief and the metrnl levels had the most significant increase. Metrnl exerted its anti-inflammatory effect through the suppression of the PI3K/Akt/NF-κB pathway in IL-1β-induced OA chondrocytes, which was accompanied with the recovery of collagen II expression and the attenuation of MMP13 and ADAMTS5. Moreover, metrnl ameliorated chondrocyte pyroptosis by inhibiting the activation of the nod-like receptor protein-3/caspase-1/gasdermin D cascade. In conclusion, moderate-intensity exercise improves inflammation and pyroptosis by increasing metrnl release, which inhibits the PI3K/Akt/NF-κB and further NLRP3/caspase-1/GSDMD signaling pathways.
Collapse
Affiliation(s)
- Jiabao Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Longhuan Piao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Ziyuan Wang
- Department of Orthopaedics Surgery, Central Hospital of Shenyang Medical College, Shenyang 110000, China
| | - Zhuangzhuang Jin
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
14
|
Wang G, Chen X, Shao Y, Xu B. PINK1/Parkin-Mediated Mitochondrial Autophagy Participates in H 2O 2-Induced Abnormal Proliferation of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. J Inflamm Res 2023; 16:1271-1282. [PMID: 36993991 PMCID: PMC10042253 DOI: 10.2147/jir.s398690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction To explore the role of PINK1/Parkin-mediated mitochondrial autophagy in H2O2-induced abnormal proliferation of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). Methods Firstly, we isolated fibroblast like synoviocytes (RA-FLS) from RA patients. H2O2-induced oxidative stress, and NAC (a ROS inhibitor) or FCCP (a mitochondrial autophagy activator) treatment inhibited ROS level or activate mitochondrial autophagy in RA-FLS. MitoSOX Red, JC-1 kit, DCFH-DA kit and CCK8 kit were used to evaluate mitochondrial redox status, mitochondrial membrane potential, intracellular ROS level and cell activity, respectively. Western blot was used to detect the protein expression. The rat model of Freund's complete adjuvant arthritis (AA) was established and treated with NAC and FCCP, respectively. The pathological changes of synovium and the percentage of apoptotic cells in synovium were detected by H&E and TUNEL staining, respectively. Results We have successfully isolated synovial cells from RA patients. Using 5μM H2O2 to stimulate RA-FLS could induce mitochondrial abnormalities of RA-FLS and inhibit RA-FLS autophagy. FCCP could reverse the effect of H2O2 on RA-FLS cell proliferation and apoptosis. NAC could reverse the effect of H2O2 on PINK1/Parkin. Overexpression of PINK1 or Parkin reversed the effect of H2O2 on RA-FLS mitochondrial autophagy, proliferation and apoptosis. The in vivo experiment results showed that both NAC and FCCP could prevent the pathogenesis of RA, reduce RA-FLS cell viability and increase RA-FLS cell apoptosis. Conclusion The PINK1/Parkin-mediated mitochondrial autophagy participates in H2O2-induced abnormal proliferation of RA-FLS, and targeting of PINK1/Parkin-mediated mitochondrial autophagy may be the key mechanism in the treatment of RA.
Collapse
Affiliation(s)
- Gaoyuan Wang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yubao Shao
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Bin Xu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Correspondence: Bin Xu, Email
| |
Collapse
|
15
|
Zhang RN, Sun ZJ, Zhang L. Pyroptosis in inflammatory bone diseases: Molecular insights and targeting strategies. FASEB J 2022; 36:e22670. [PMID: 36412502 DOI: 10.1096/fj.202201229r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Inflammatory bone diseases include osteoarthritis (OA) and rheumatoid arthritis (RA), which can cause severe bone damage in a chronic inflammation state, putting tremendous pressure on the patients' families and government agencies regarding medical costs. In addition, the complexity of osteoimmunology makes research on these diseases difficult. Hence, it is urgent to determine the potential mechanisms and find effective drugs to target inflammatory bone diseases to reduce the negative effects of these diseases. Recently, pyroptosis, a gasdermin-induced necrotic cell death featuring secretion of pro-inflammatory cytokines and lysis, has become widely known. Based on the effect of pyroptosis on immunity, this process has gradually emerged as a vital component in the etiopathogenesis of inflammatory bone diseases. Herein, we review the characteristics and mechanisms of pyroptosis and then focus on its clinical significance in inflammatory bone diseases. In addition, we summarize the current research progress of drugs targeting pyroptosis to enhance the therapeutic efficacy of inflammatory bone diseases and provide new insights for future directions.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|