1
|
Tao L, Zhang Z, Li C, Huang M, Chang P. The therapeutic targets and signaling mechanisms of ondansetron in the treatment of critical illness in the ICU. Front Pharmacol 2024; 15:1443169. [PMID: 39234104 PMCID: PMC11372243 DOI: 10.3389/fphar.2024.1443169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Background There is accumulating evidence regarding the benefits of the 5-HT3 receptor antagonist ondansetron for the treatment of critical illness due to its potential anti-inflammatory effect. This study attempted to determine the potential targets and molecular mechanisms of ondansetron's action against critical illnesses. Methods A bioinformatics analysis of network pharmacology was conducted to demonstrate screening targets and the signaling pathways of ondansetron action against the most common critical illnesses such as acute kidney injury (AKI), sepsis, and acute respiratory distress syndrome (ARDS). Experiments of LPS-stimulated rat neutrophils with ondansetron treatment were conducted to further validate the relevant hypothesis. Results A total of 198, 111, and 26 primary causal targets were identified from the data for the action of ondansetron against AKI, sepsis, and ARDS respectively. We found that the pathway of neutrophil extracellular traps (NETs) formation is statistically significantly involved in the action of ondansetron against these three critical illnesses. In the pathway of NETs formation, the common drug-disease intersection targets in these three critical illnesses were toll-like receptor 8 (TLR8), mitogen-activated protein kinase-14 (MAPK14), nuclear factor kappa-B1 (NFKB1), neutrophil elastase (NE), and myeloperoxidase (MPO). Considering these bioinformatics findings, we concluded that ondansetron anti-critical illness effects are mechanistically and pharmacologically implicated with suppression of neutrophils-associated inflammatory processes. It was also showed that after treatment of LPS-stimulated rat neutrophils with ondansetron, the key proteins NE, MPO, and Peptide Arginine Deaminase 4 (PAD4) in the NETs formation were significantly reduced, and the inflammatory factors IL-6, IL-1β, TNF-α, and chemokine receptor (CXCR4) were also significantly decreased. Conclusion The excessive formation of NETs may have important research value in the development and progression of critical illness. Ondansetron may reduce excessive inflammatory injury in critical diseases by reducing the formation of NETs via influencing the five targets: TLR8, NFKB1, MAPK14, NE, and MPO. Ondansetron and these primary predictive biotargets may potentially be used to treat critical illness in future clinical practice.
Collapse
Affiliation(s)
- Lili Tao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuang Li
- Department of Emergency Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minxuan Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Naderi R, Pourheydar B, Moslehi A. Tropisetron improved testicular inflammation in the streptozotocin-induced diabetic rats: The role of toll-like receptor 4 (TLR4) and mir146a. J Biochem Mol Toxicol 2023; 37:e23272. [PMID: 36504472 DOI: 10.1002/jbt.23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
As a serotonin antagonist, tropisetron positively affects blood glucose lowering, insulin synthesis, pancreas inflammation, and apoptosis in diabetes. Reproductive disorders are one of the diabetes-induced chronic complications. The present study aimed to evaluate the effect of tropisetron on diabetes-induced testicular inflammation, its signaling pathway, and mir146a. To this end, animals were assigned to the control, tropisetron, diabetes (DM), DM-tropisetron, and DM-glibenclamide groups. Streptozotocin (50 mg/kg) was intraperitoneally injected to provide diabetes. Tropisetron and glibenclamide were then administrated intraperitoneally for 2 weeks after diabetes induction. Testes histology, real-time polymerase chain reaction, western blot analysis, ELISA, and immunohistochemistry assays were also performed. The finding revealed that tropisetron significantly improved diabetes-induced testis damages, lowered TLR4, TRAF6, IRAK1, NF-κB, and caspase3 protein expressions, and decreased TNF-α and IL-1 levels. Moreover, the mir146a expression declined following the tropisetron treatment. This study demonstrated that the significant role of tropisetron in lowering testicular inflammation and apoptosis might have been due to the inhibition of the TLR4/IRAK1/TRAF6 signaling pathway and thereby the attenuation of NF-κB and caspase3 expression and inflammatory cytokines. Furthermore, the downregulation of mir146a, as an inflammatory microRNA interacting with TLR4, showed another pathway, through which tropisetron improved diabetes-induced testicular injuries.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Azam Moslehi
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Kweon DY, Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Park JM, Lee ES, Choi WS, Hwang DY. Therapeutic Effects of Aloe saponaria against Ulcerative Colitis Induced by Dextran Sulfate Sodium. Curr Issues Mol Biol 2023; 45:1483-1499. [PMID: 36826041 PMCID: PMC9955819 DOI: 10.3390/cimb45020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aloe vera (A. vera) has been studied as a treatment option for ulcerative colitis (UC), but there is a lack of scientific evidence showing whether treatment with Aloe saponaria (A. saponaria) can also be beneficial. To investigate the therapeutic potential of A. saponaria as a treatment for UC, clinical symptoms, histopathological characteristics of the colon, inflammatory response, and toxicity were analyzed in dextran sulfate sodium (DSS)-induced UC mice after administration of aqueous extracts of A. saponaria (AAS) for 7 days. The total polyphenol and tannin content of AAS was 272 µg/g and 163 µg/g, respectively. AAS exhibited significant antioxidant activity. Several clinical symptoms, including body weight, colon length, and hematochezia, remarkably improved in the DSS+AAS treated group compared to the DSS+Vehicle-treated group. In addition, similar improvements were detected in the histopathological characteristics and mucin-secreting ability in the colon of DSS-induced UC mice after the administration of AAS. The levels of infiltrated inflammatory cells and cytokine expression were significantly decreased in a dose-dependent manner in the colon of the DSS+AAS-treated group. These alterations in inflammatory response were accompanied by a significant recovery of the protein kinase C/extracellular signal-regulated kinase (PKC/ERK) and phosphatidylinositol-3-kinase/serine-threonine protein kinase (PI3K/Akt) signaling pathways. However, the levels of key markers for hepatotoxicity and nephrotoxicity consistently remained between those of the DSS+AAS-treated and the No groups. Therefore, the results of the present study provide novel evidence that AAS may improve the clinical symptoms and attenuate the inflammatory response in DSS-induced UC mice and does not have any significant hepatotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Do Yeong Kweon
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju Min Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Suk Lee
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Won Sik Choi
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Yu D, Gong X, Zhang Y, Li Q, Zhang M. Tropisetron Preconditioning Decreases Myocardial Biomarkers in Patients Undergoing Heart Valve Replacement Surgery. Front Med (Lausanne) 2022; 9:690272. [PMID: 35425785 PMCID: PMC9002259 DOI: 10.3389/fmed.2022.690272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cardioplegic arrest during the heart valve replacement surgery frequently leads to myocardial damage. Tropisetron (TRP) has been demonstrated to reduce myocardial ischemia-reperfusion injury and inflammation in animals. We examined the efficacy of TRP in lowering myocardial biomarkers in patients undergoing heart valve replacement surgery. Methods A total of seventy-five patients, scheduled for elective heart valve replacement surgery, were randomly chosen to receive either 10 ml of normal saline or 10 mg/10 ml of TRP immediately after anesthesia induction. Blood samples for the measurement of cardiac troponin I (cTnI), creatine kinase (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were taken before anesthesia, as well as 4, 12, and 24 h after aortic cross-clamp release to evaluate myocardial injury using two-way ANOVA for repeated measurements. The study was registered at www.chictr.org.cn (number, ChiCTR-1800018681). Results Treatment with TRP decreased the increment of cTnI (Fgroup = 4.911, p = 0.030; Ftime = 55.356, p = 0.001; Fgroup × time = 5.340, p = 0.002) at 12 and 24 h; of CK-MB (Fgroup = 6.552, p = 0.013; Ftime = 49.276, p = 0.001; Fgroup × time = 7.627, p = 0.003) at 4, 12, and 24 h; of TNF-α (Fgroup = 4.153, p = 0.046; Ftime = 28.244, p = 0.002; Fgroup × time = 4.692, p = 0.006) at 4 and 12 h; and of LDH (Fgroup = 4.275, p = 0.043; Ftime = 63.225, p = 0.001; Fgroup × time = 2.501, p = 0.083) at 24 h after the release of the aortic cross-clamp. It increased IL-10 (Fgroup = 5.958, p = 0.018; Ftime = 31.226, p = 0.002; Fgroup × time = 1.464, p = 0.236) at 12 h after the release of the aortic cross-clamp. Multiple linear regression analysis showed that cardiopulmonary bypass (CPB) time was a risk factor, and that TRP treatment was a protective factor for postoperative cTNI change (β = 4.449, 95% CI [0.97–7.92], p = 0.013 for CPB time; and β = −381, 95% CI [−613.4 to −148.5], p = 0.002 for TRP treatment). Conclusions Tropisetron had cardioprotective and anti-inflammatory effects in patients undergoing heart valve replacement surgery with cardioplegic arrest. The addition of TRP and reduction of CPB time should be considered for myocardial protection in heart valve replacement surgery. Clinical Trial Registration [www.chictr.org.cn/index.aspx], identifier [ChiCTR1800018681].
Collapse
Affiliation(s)
- Di Yu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Xingrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Yufei Zhang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mazhang Zhang
- Department of Anesthesiology, Shanghai Children' Medical Central, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, Guo Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci 2021; 269:119008. [PMID: 33434535 DOI: 10.1016/j.lfs.2020.119008] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease related to intestinal dysbiosis. Luteolin has been reported to reduce inflammation. However, it remains unclear whether luteolin ameliorates UC and regulates gut microbiota. In this study, we investigated the effects of luteolin on colonic structure and inflammation of dextran sulfate sodium (DSS)-induced rats using hematoxylin-eosin staining, immunohistochemistry and enzyme-linked immunosorbent assay and evaluated the effects of luteolin on gut microbiota using 16S rDNA sequencing. We found that luteolin treatment significantly reduced colonic damage, and inhibited colonic inflammation in UC rats, evidenced by the decreased levels of NF-κB, IL-17 and IL-23 in UC rats and the increased level of PPAR-γ. In addition, the 16S rDNA sequencing analysis revealed that luteolin treatment could alter diversity and composition of gut microbiota in UC rats. Lactobacillus, Bacteroides, Roseburia and Butyricicoccus were dominant genera in the luteolin group. Luteolin treatment reduced DSS-induced increased ratios of Lactobacillus and Prevotella_9. Furthermore, KEGG analysis revealed that gut microbiota was mainly related to DNA repair and recombination proteins, ribosome, purine metabolism, peptidases, and pyrimidine metabolism. In conclusion, our results revealed that luteolin could alleviate DSS-induced colitis in rats, and gut microbiota had the potential to serve as promising biomarkers for uncovering the mechanism by which luteolin improved UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pengli Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yao Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Danyang Zhao
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian Yang
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - Zijing Guo
- Department of Hematology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Zirak MR, Karimi G, Rahimian R, Jafarian AH, Hayes AW, Mehri S. Tropisetron ameliorates cyclophosphamide-induced hemorrhagic cystitis in rats. Eur J Pharmacol 2020; 883:173310. [PMID: 32619674 DOI: 10.1016/j.ejphar.2020.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
Hemorrhagic cystitis is one of the most important complications of cyclophosphamide, a drug widely used in cancer chemotherapy and bone marrow transplantation. 5-HT3 antagonists are anti-emetic agents and have been shown to have notable anti-inflammatory and antioxidant properties. This study was designed to investigate the possible protective effects of tropisetron against cyclophosphamide-induced hemorrhagic cystitis in rats. Hemorrhagic cystitis was induced in female rats by cyclophosphamide (270 mg/kg). Tropisetron (2.5, 5 and 7.5 mg/kg), granisetron (2.5 and 5 mg/kg), and ondansetron (5 mg/kg) were injected 15 min before, 4 and 8 h after cyclophosphamide. To evaluate the role of alpha7 nicotinic acetylcholine receptor (α7nAChR), its antagonist, methyllycaconitine (5 mg/kg) was administered 30 min before tropisetron. After 24 h, animals were killed under anesthesia. Macroscopic and histological changes were evaluated. Malondialdehyde (MDA), glutathione (GSH) and Evans blue were measured spectrophotometrically. Furthermore, the protein levels of p38 mitogen-activated protein kinases (P38 MAPK), p-P38, signal transducer and activator of transcription 3 (STAT3), p-STAT3 and Poly (ADP-ribose) polymerase (PARP) were determined using Western blot. Cyclophosphamide administration significantly induced histopathological damages and increased MDA, p-p38/p38, p-STAT3/STAT3, and PARP levels compared with the saline group. Tropisetron treatment diminished histopathological injuries as well as MDA level, and STAT3 activity compared to cyclophosphamide treated rats. Co-administration of methyllycaconitine with tropisetron, partially or completely reversed the protective effects of tropisetron. Our results showed that prophylactic administration of tropisetron markedly ameliorated the cyclophosphamide-induced bladder hemorrhage and inflammation in rats. These effects of tropisetron were α7nAChR dependent.
Collapse
Affiliation(s)
- Mohammad Reza Zirak
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Soghra Mehri
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
9
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
10
|
Gliclazide attenuates acetic acid-induced colitis via the modulation of PPARγ, NF-κB and MAPK signaling pathways. Toxicol Appl Pharmacol 2020; 391:114919. [PMID: 32045587 DOI: 10.1016/j.taap.2020.114919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative Colitis is a universal autoimmune disease with high incidence rates worldwide. It is characterized by the existence of many other concurrent immune-associated ailments, including diabetes. The used strategies for the management of this highly costing and complicated disease face great challenges. Therefore, the urge for new medication with fewer side effects and high efficacy is growing. The peroxisome proliferator-activated receptor-gamma (PPARγ) and nuclear factor Kappa-B (NF-κB) can be considered as crucial targets for the treatment of ulcerative colitis. Several studies reported the antioxidants, anti-inflammatory, and antiapoptotic actions of gliclazide and evaluated its cardioprotective and renoprotective effects. However, its impact on ulcerative colitis has never been investigated. This study delineated the effect of gliclazide administration on ulcerative colitis induced by acetic acid in rats and the underlying molecular mechanisms. Gliclazide (10 mg/kg; p.o) prominently decreased colon tissue injury as assessed by the histopathological analysis as well as myeloperoxidase, and intercellular adhesion molecule-1 levels. Gliclazide significantly alleviated the proinflammatory mediator, IL-6, promoted the anti-inflammatory cytokine, IL-10 and, withheld oxidative stress in the injured colon tissues. The protective effect of gliclazide was mediated through the upregulation of PPARγ and downregulation of NF-κB expression. The diminution of ulcerative colitis was also accompanied by an inhibition of the elevated activity and expression of mitogen-activated protein kinases and caspase-3 as assessed by Western blot and immunohistochemistry, respectively. Our findings spotlight, for the first time, the potential of the antidiabetic agent, gliclazide, to attenuate the experimentally induced ulcerative colitis. Therefore, gliclazide might be a propitious agent for the management of ulcerative colitis in diabetic patients.
Collapse
|
11
|
Rahimian R, Lalancette-Hébert M, Weng YC, Sato S, Kriz J. Glucosamine-mediated immunomodulation after stroke is sexually dimorphic. Brain Behav Immun Health 2020; 3:100041. [PMID: 34589834 PMCID: PMC8474641 DOI: 10.1016/j.bbih.2020.100041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
Growing evidence suggests that galectin-3 (Gal-3) is instrumental in orchestrating innate immune response and microglia activation following different brain pathologies. However, its role remains controversial. We recently showed that a readily available natural product glucosamine may act as a strong modulator of Gal-3. Glucosamine is a naturally occurring sugar and a precursor in the synthesis of glycosylated proteins. It is often used as a supplement to treat symptoms of various inflammatory conditions. Our recent work suggests that by increasing the synthesis and availability of Gal-3 ligands and/or by regulating its expression levels, glucosamine may significantly modulate Gal-3 signaling. Because evidence suggests that Gal-3 might be differentially regulated after ischemic injury in the brains of female mice, here we examined and compared the immunomodulatory potential of glucosamine in male and female stroke. The mice were subjected to transient middle cerebral artery occlusion (MCAO), followed by different reperfusion periods. The short-term 5 days treatment with glucosamine (150 mg/kg i.p.) was initiated 2 hrs after stroke. To visualize the effects of glucosamine treatment on post-stroke inflammation, we took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) allowing in vivo bioluminescence imaging of innate immune response and microglial activation. We report that after stroke, both, male and female mice strongly up-regulate the TLR2 bioluminescence signals from activated microglia, however, the observed in vivo immunomodulatory effects of glucosamine after stroke were sex-dependent. Analysis of cytokine profiles at protein level, in glucosamine-treated male mice 72hsr after stroke, revealed down regulation of pro-inflammatory cytokines, an increase in levels of anti-inflammatory cytokines including IL-4, IL13 and colony stimulating factors MCFC and GM-CSF and a significant decrease in the size of ischemic lesion in male mice. Conversely, in female mice glucosamine markedly increases the pro-inflammatory signaling and exacerbates ischemic injury. Analysis of the downstream signaling target of glucosamine/Gal-3 revealed that glucosamine administration restored PPAR-γ activity in male but not in female mice 3 days following MCAO. Together, our results suggest that glucosamine acts as a fine tuner of post-ischemic inflammation in a sex dependent-manner and may have therapeutic potential after stroke in males. Based on our results propose that targeting immune system after stroke may require adapted sex-specific therapeutic approaches. Immunomodulatory effects of glucosamine are sex dependent. Glucosamine differentially modulates galectin-3/IL4R signaling in male and female mice. Glucosamine restores PPAR-gamma transcriptional activity in male mice and protects against stroke in male mice. Glucosamine increases inflammatory signaling and exacerbates ischemic injury in female mice.
Collapse
Affiliation(s)
- Reza Rahimian
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, QC, G1J 2G3, Canada
| | - Melanie Lalancette-Hébert
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, QC, G1J 2G3, Canada
| | - Yuan Cheng Weng
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, QC, G1J 2G3, Canada
| | - Sachiko Sato
- Glycobiology Laboratory, Research Centre for Infectious Disease, Université Laval, QC, G1V 4G2, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, QC, G1J 2G3, Canada
| |
Collapse
|
12
|
Liu J, Cai J, Fan P, Zhang N, Cao Y. The Abilities of Salidroside on Ameliorating Inflammation, Skewing the Imbalanced Nucleotide Oligomerization Domain-Like Receptor Family Pyrin Domain Containing 3/Autophagy, and Maintaining Intestinal Barrier Are Profitable in Colitis. Front Pharmacol 2019; 10:1385. [PMID: 31849652 PMCID: PMC6901016 DOI: 10.3389/fphar.2019.01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Salidroside (Sal), as a major glycoside extracted from Rhodiola rosea L., has exhibited its mighty anti-aging, anti-oxidant, anti-cancer, anti-inflammation, and neuroprotective effects in many diseases. Recently, it has showed its protective effect in colitis mice by activating the SIRT1/FoxOs pathway. Whereas, it is not known whether Sal has other protective mechanisms on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, we investigated the protective effects and mechanisms of Sal on DSS-induced colitis in mice. The results demonstrated Sal was a competent candidate in the treatment of ulcerative colitis (UC). Sal remitted DSS-induced disease activity index (DAI), colon length shortening, and colonic pathological damage. Simultaneously, Sal alleviated excessive inflammation by reversing the IL-1β, TNF-α, and IL-10 protein levels in DSS-treated mice. Western blot analysis revealed that Sal inhibited p65 and p38 activation together with peroxisome proliferator-activated receptor (PPARγ) up-regulation. In addition, Sal skewed the imbalanced activation of nucleotide oligomerization domain-like receptor family pyrin domain containing 3 inflammasome and autophagy contributing to colitis recovery. The damaged intestinal barrier induced by DSS was also alleviated along with plasma lipopolysaccharides (LPS) reduction after Sal treatment. In vitro, Sal showed PPARγ-dependent anti-inflammatory effect in LPS-stimulated RAW264.7 cells. In summary, our results demonstrated that Sal might be an effective factor for UC treatment and its pharmacological value deserved further development.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiapei Cai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
13
|
Rahimian R, Fakhfouri G, Zirak MR. Pros and cons of 5-HT 3 receptor antagonists in neuropsychiatric diseases. Biomed Pharmacother 2019; 118:109301. [PMID: 31402188 DOI: 10.1016/j.biopha.2019.109301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, G1J 2G3, Canada.
| | - Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, G1J 2G3, Canada
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
15
|
Rezaei N, Eftekhari MH, Tanideh N, Mokhtari M, Bagheri Z. Comparison of Antioxidant and Anti-Inflammatory Effects of Honey and Spirulina platensis with Sulfasalazine and Mesalazine on Acetic Acid-Induced Ulcerative Colitis in Rats. Galen Med J 2019; 8:e1095. [PMID: 34466462 PMCID: PMC8343697 DOI: 10.31661/gmj.v8i0.1095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/20/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Antioxidant therapy has gained attention for the treatment of ulcerative colitis (UC). The excessive generation of reactive oxygen/nitrogen species in the gastrointestinal tract increases oxidative stress, thereby leading to antioxidant defense depletion, lipid peroxidation, inflammation, tissue damage, and ulceration. Spirulina platensis (SP) and honey are excellent sources of potent antioxidants such as polyphenols and other bioactive compounds. We aimed to investigate antioxidant and anti-inflammatory effects of honey and SP in comparison with sulfasalazine (SSZ) and mesalazine on acetic acid-induced colitis (AA-colitis) in rats. Materials and Methods: Fifty-six Sprague Dawley male rats were allocated to seven groups, with each group comprising eight rats. UC was induced, except in normal controls (NC). All groups received oral treatments for seven days. The normal saline solution of 2 mL was intrarectally administered to the NC group. The AA-colitis and NC groups received 2 mL acetic acid intrarectally as a single dose and 2 mL normal saline for seven consecutive days orally. The mesalazine group received 100 mg/kg mesalazine, the SSZ group 360 mg/kg SSZ, the honey or H group 1 mL honey diluted with 1 mL distilled water, the SH group 1g/kg SP and 1 mL honey, and the SP group 1g/kg SP. After clinical activity score assessment, the rats were sacrificed. Colonic weight/length ratio, prostaglandin E2 (PGE2), myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), glutathione peroxidase (GPx), total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Colonic histopathological changes were observed microscopically. Results: Treatment of UC with SP, honey, and combination regimen significantly reduced TNF-α, IL-1β, IL-6, MDA, MPO, NO, and PGE2, and increased TAC, GSH, GPx, and SOD in interventional groups compared to the AA-colitis group (P<0.05). Conclusion: Honey and SP might be beneficial food supplements for medical nutrition therapy in UC.
Collapse
Affiliation(s)
- Nadia Rezaei
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Correspondence to: Mohammad Hassan Eftekhari, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran Telephone Number: +989177088717 Email Address:
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Bagheri
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Potential roles of 5-HT 3 receptor (5-HT 3R) antagonists in modulating the effects of nicotine. Biomed Pharmacother 2019; 112:108630. [PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
Collapse
|
17
|
Fakhraei N, Javadian N, Rahimian R, Nili F, Rahimi N, Hashemizadeh S, Dehpour AR. Involvement of central opioid receptors in protective effects of methadone on experimental colitis in rats. Inflammopharmacology 2018; 26:1399-1413. [PMID: 30318564 DOI: 10.1007/s10787-018-0538-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE There are several lines of evidence on the protective roles of opioids in gastrointestinal inflammatory conditions. This study aims to distinguish the central and peripheral roles of methadone, a non-selective opioid receptor agonist, in an acute model of ulcerative colitis in male rats. METHODS Ulcerative colitis was induced by intrarectal administration of acetic acid 4%. Methadone was injected subcutaneously (s.c.), 5 and 10 mg/kg, and intracerebroventricular (i.c.v.), 50 and 300 ng/rat. Opioid antagonists were employed. Methylnaltrexone (MNTX; 5 mg/kg, i.p.), a peripherally acting opioid receptor antagonist, and naltrexone (NTX; 5 mg/kg, i.p. and 10 ng/rat, i.c.v.), a peripherally and centrally acting opioid receptor antagonist were injected before methadone (10 mg/kg, s.c. and or 300 ng/rat, i.c.v.) administration. NTX (5 mg/kg, i.p. and 10 ng/rat, i.c.v.) were administered 30 min prior to administration of methadone (10 mg/kg, s.c. and 300 ng/rat, i.c.v.), respectively. MNTX (5 mg/kg, i.p.) was injected 30 min prior to methadone (10 mg/kg, s.c.). Seventy-two hours following colitis induction, macroscopic and microscopic mucosal lesions, and the colonic levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined. RESULTS Methadone (300 ng/rat, i.c.v.) and Methadone (5 and 10 mg/kg, s.c.) improved the macroscopic and microscopic scores through opioid receptors. Also, a significant reduction in TNF-α and IL-1β was observed. Peripherally and centrally injected NTX significantly reversed methadone 10 mg/kg s.c. anti-inflammatory effects while MNTX could not completely reverse this effect. Moreover, centrally administered methadone (300 ng/rat) showed the anti-inflammatory effect which was reversed by central administration of NTX (10 ng/rat). CONCLUSIONS The opioid receptors mainly the central opioid receptors may mediate the protective actions of methadone on the experimental model of inflammatory bowel disease in rat.
Collapse
MESH Headings
- Acetic Acid
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/mortality
- Colitis, Ulcerative/prevention & control
- Injections, Intraventricular
- Injections, Subcutaneous
- Interleukin-1beta/biosynthesis
- Intestinal Mucosa/pathology
- Male
- Methadone/administration & dosage
- Methadone/therapeutic use
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Javadian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, G1J 2G3, Canada
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Protective effects of tropisetron on cerulein-induced acute pancreatitis in mice. Biomed Pharmacother 2017; 93:589-595. [PMID: 28686973 DOI: 10.1016/j.biopha.2017.06.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) causes morbidity and mortality. The aim of the present study was to investigate the protective effect of tropisetron against AP induced by cerulein. Cerulein (50μg/kg, 5 doses) was used to induce AP in mice. Six hours after final cerulein injection, animals were decapitated. Hepatic/pancreatic enzymes in the serum, pancreatic content of malondialdehyde (MDA), pro-inflammatory cytokines and myeloperoxidase (MPO) activity were measured. Tropisetron significantly attenuated pancreatic injury markers and decreased the amount of elevated serum amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), MPO activities and pro-inflammatory cytokines levels caused by AP in mice. Tropisetron didn't affect the pancreatic levels of MDA. Our results suggest that tropisetron could attenuate cerulein-induced AP by combating inflammatory signaling. Further clinical studies are needed to confirm its efficacy in patients with AP.
Collapse
|