1
|
Liao HJ, Hsu PN. Immunomodulatory effects of extracellular vesicles from mesenchymal stromal cells: Implication for therapeutic approach in autoimmune diseases. Kaohsiung J Med Sci 2024; 40:520-529. [PMID: 38712483 DOI: 10.1002/kjm2.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Gao SJ, Liu L, Li DY, Liu DQ, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Interleukin-17: A Putative Novel Pharmacological Target for Pathological Pain. Curr Neuropharmacol 2024; 22:204-216. [PMID: 37581321 PMCID: PMC10788884 DOI: 10.2174/1570159x21666230811142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 08/16/2023] Open
Abstract
Pathological pain imposes a huge burden on the economy and the lives of patients. At present, drugs used for the treatment of pathological pain have only modest efficacy and are also plagued by adverse effects and risk for misuse and abuse. Therefore, understanding the mechanisms of pathological pain is essential for the development of novel analgesics. Several lines of evidence indicate that interleukin-17 (IL-17) is upregulated in rodent models of pathological pain in the periphery and central nervous system. Besides, the administration of IL-17 antibody alleviated pathological pain. Moreover, IL-17 administration led to mechanical allodynia which was alleviated by the IL-17 antibody. In this review, we summarized and discussed the therapeutic potential of targeting IL-17 for pathological pain. The upregulation of IL-17 promoted the development of pathological pain by promoting neuroinflammation, enhancing the excitability of dorsal root ganglion neurons, and promoting the communication of glial cells and neurons in the spinal cord. In general, the existing research shows that IL-17 is an attractive therapeutic target for pathologic pain, but the underlying mechanisms still need to be investigated.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Zhang E, Shang C, Ma M, Zhang X, Liu Y, Song S, Li X. Polyguluronic acid alleviates doxorubicin-induced cardiotoxicity by suppressing Peli1-NLRP3 inflammasome-mediated pyroptosis. Carbohydr Polym 2023; 321:121334. [PMID: 37739547 DOI: 10.1016/j.carbpol.2023.121334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Polyguluronic acid (PG), a polysaccharide from alginate, possesses excellent bioactivities. We prepared high-purity PG with 10.41 kDa molecular weight (Mw) and a 59 average degree of polymerization (DP) by acid hydrolysis, three pH grades, Q-Sepharose column elution, and Sephadex G-25 column desalination. Then, we evaluated the PG protective effects on doxorubicin-induced cardiotoxicity (DIC) in vitro and in vivo. The nontoxic PG enhanced cellular viability, reduced cell pyroptosis morphology, diminished the LDH and IL-1β release, and downregulated expressions of ASC oligomerization, NLRP3, cl-CASP1, and GSDMD, by which PG protected the cardiomyocytes from NLRP3 inflammasome-mediated pyroptosis in doxorubicin-stimulated HL-1 cells and C57BL/6J mice. The probable underlying mechanism may be that PG downregulated doxorubicin -induced Peli1, the deficiency of which could inhibit doxorubicin-induced NLRP3 inflammasome-mediated pyroptosis. These results suggested that polysaccharide PG from alginate could prevent DIC and may be a potential therapeutic agent or bioactive material for preventing DIC.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Chuangeng Shang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Mingtao Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xuanfeng Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yu Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xia Li
- Marine College, Shandong University, Weihai, Shandong 264209, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
5
|
Mortier C, Quintelier K, De Craemer AS, Renson T, Deroo L, Dumas E, Verheugen E, Coudenys J, Decruy T, Lukasik Z, Van Gassen S, Saeys Y, Hoorens A, Lobatón T, Van den Bosch F, Van de Wiele T, Venken K, Elewaut D. Gut Inflammation in Axial Spondyloarthritis Patients is Characterized by a Marked Type 17 Skewed Mucosal Innate-like T Cell Signature. Arthritis Rheumatol 2023; 75:1969-1982. [PMID: 37293832 DOI: 10.1002/art.42627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Patients with spondyloarthritis (SpA) often present with microscopic signs of gut inflammation, a risk factor for progressive disease. We investigated whether mucosal innate-like T cells are involved in dysregulated interleukin-23 (IL-23)/IL-17 responses in the gut-joint axis in SpA. METHODS Ileal and colonic intraepithelial lymphocytes (IELs), lamina propria lymphocytes (LPLs), and paired peripheral blood mononuclear cells (PBMCs) were isolated from treatment-naive patients with nonradiographic axial SpA with (n = 11) and without (n = 14) microscopic gut inflammation and healthy controls (n = 15) undergoing ileocolonoscopy. The presence of gut inflammation was assessed histopathologically. Immunophenotyping of innate-like T cells and conventional T cells was performed using intracellular flow cytometry. Unsupervised clustering analysis was done by FlowSOM technology. Serum IL-17A levels were measured via Luminex. RESULTS Microscopic gut inflammation in nonradiographic axial SpA was characterized by increased ileal intraepithelial γδ-hi T cells, a γδ-T cell subset with elevated γδ-T cell receptor expression. γδ-hi T cells were also increased in PBMCs of patients with nonradiographic axial SpA versus healthy controls and were strongly associated with Ankylosing Spondylitis Disease Activity Score. The abundance of mucosal-associated invariant T cells and invariant natural killer T cells was unaltered. Innate-like T cells in the inflamed gut showed increased RORγt, IL-17A, and IL-22 levels with loss of T-bet, a signature that was less pronounced in conventional T cells. Presence of gut inflammation was associated with higher serum IL-17A levels. In patients treated with tumor necrosis factor blockade, the proportion of γδ-hi cells and RORγt expression in blood was completely restored. CONCLUSION Intestinal innate-like T cells display marked type 17 skewing in the inflamed gut mucosa of patients with nonradiographic axial SpA. γδ-hi T cells are linked to intestinal inflammation and disease activity in SpA.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium, Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium, and Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ann-Sophie De Craemer
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Thomas Renson
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liselotte Deroo
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Emilie Dumas
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eveline Verheugen
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Julie Coudenys
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tine Decruy
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Zuzanna Lukasik
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Triana Lobatón
- Department of Internal Medicine and Pediatrics, Ghent University and Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van den Bosch
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
6
|
Aghazadeh Z, Sanaee Delir D, Gholamrezaie HR, Sadoughi A, Nezami Asl A, Noori Sanami M, Mahdavi Gorabi A, Panahi Y, Taeb M, Razavi A, Rafia S, Naderiyan Z, Robat-Jazi B, Mirshafiey A. The Open, Randomized, Positive Control Clinical Trial of Guluronic Acid (G2013) on SARS-CoV-2 Patients. Curr Drug Discov Technol 2023; 20:e180423215957. [PMID: 37076459 DOI: 10.2174/1570163820666230418095115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Recently, the coronavirus disease 2019 (COVID-19) infection, with a vast spectrum of clinical and paraclinical symptoms has been a major health concern worldwide. Therapeutical management of COVID-19 includes antiviral and anti-inflammatory drugs. NSAIDs, as the second-line therapy, are often prescribed to relieve the symptoms of COVID-19. The α-L-guluronic acid (G2013) is a non-steroidal patented (PCT/EP2017/067920) agent with immunomodulatory properties. This study investigated the effect of G2013 on the outcome of COVID-19 in moderate to severe patients. METHODS The disease's symptoms were followed up during hospitalization and for 4 weeks postdischarge in G2013 and control groups. Paraclinical indices were tested at the time of admission and discharge. Statistical analysis was performed on clinical and paraclinical parameters and ICU admission and death rate. RESULTS The primary and secondary outcomes indicated the efficiency of G2013 on COVID-19 patients' management. There were significant differences in the duration of improvement of fever, coughing, fatigue/malaise. Also, a comparison of paraclinical indices at the time of admission and discharge showed significant change in prothrombin, D-dimer, and platelet. As the main findings of this study, G2013 significantly decreased the percentage of ICU admission (control:17 patients, G2013:1 patient) and death (control: 7 cases, G2013:0). CONCLUSION These results conclude that G2013 has sufficient potential to be considered for moderate to severe COVID-19 patients, can significantly reduce the clinical and physical complications of this disease, has a positive effect on modulating the coagulopathy process, and aids in saving lives.
Collapse
Affiliation(s)
- Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davod Sanaee Delir
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Farhikhtegan Hospital, Tehran, Iran
| | - Hamid Reza Gholamrezaie
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Farhikhtegan Hospital, Tehran, Iran
| | - Arezoo Sadoughi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehran Noori Sanami
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Farhikhtegan Hospital, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Health Re-search Center, Chamran Hospital, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Younes Panahi
- Deputy for Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahsa Taeb
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Rafia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Naderiyan
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Farhikhtegan Hospital, Tehran, Iran
| | - Behrouz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Adipose-Derived Stem Cell Exosomes as a Novel Anti-Inflammatory Agent and the Current Therapeutic Targets for Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10071725. [PMID: 35885030 PMCID: PMC9312519 DOI: 10.3390/biomedicines10071725] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with rheumatoid arthritis (RA), a chronic inflammatory joint disorder, may not respond adequately to current RA treatments. Mesenchymal stem cells (MSCs) elicit several immunomodulatory and anti-inflammatory effects and, thus, have therapeutic potential. Specifically, adipose-derived stem cell (ADSC)-based RA therapy may have considerable potency in modulating the immune response, and human adipose tissue is abundant and easy to obtain. Paracrine factors, such as exosomes (Exos), contribute to ADSCs’ immunomodulatory function. ADSC-Exo-based treatment can reproduce ADSCs’ immunomodulatory function and overcome the limitations of traditional cell therapy. ADSC-Exos combined with current drug therapies may provide improved therapeutic effects. Using ADSC-Exos, instead of ADSCs, to treat RA may be a promising cell-free treatment strategy. This review summarizes the current knowledge of medical therapies, ADSC-based therapy, and ADSC-Exos for RA and discusses the anti-inflammatory properties of ADSCs and ADSC-Exos. Finally, this review highlights the expanding role and potential immunomodulatory activity of ADSC-Exos in patients with RA.
Collapse
|
8
|
Zhao J, Wei K, Chang C, Xu L, Jiang P, Guo S, Schrodi SJ, He D. DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Front Immunol 2022; 13:863703. [PMID: 35309322 PMCID: PMC8927780 DOI: 10.3389/fimmu.2022.863703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
9
|
Bagherian Z, Mirshafiey A, Mohsenzadegan M, Farajollahi MM. Evaluation of G2013 (α-L-guluronic acid) efficacy on PC-3 cells through inhibiting the expression of inflammatory factors. Clin Exp Pharmacol Physiol 2021; 49:254-263. [PMID: 34699087 DOI: 10.1111/1440-1681.13605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
Given multiple treatment strategies for prostate cancer, its mortality rate is still high; therefore, novel treatment strategies seem necessary. G2013 or α-L-guluronic acid is a new patented drug with immunomodulatory and anti-inflammatory properties. This study aimed to evaluate the property of G2013 on inflammatory molecules involved in tumorigenesis of prostate cancer. MTT assay was used to assess the effect of the drug on the proliferation of PC-3 cells. Expression of interleukin 8 (IL-8), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differentiation factor 88 (MYD-88), cyclooxygenase 2 (COX-2), matrix metalloproteinase-2 (MMP-2), and MMP-9 genes were studied in the PC-3 cells treated with 25 (low dose) or 50 (high dose) µg/mL of G2013 for 24 h using quantitative real-time polymerase chain reaction (qRT-PCR) technique. Protein expression of NF-κB and protein activities of MMP-2 and MMP-9 were assayed using flow cytometry and gelatin zymography, respectively. The expression of COX-2 (p = 0.007 at low dose), MMP-2 (p = 0.023 at low dose, p = 0.002 at high dose), NF-κB (p = 0.004 at low dose) and IL-8 (p < 0.0001 in both doses) genes, NF-κB protein (p < 0.0001 in both doses), and MMP-2 activity (p < 0.0001 in both doses) were significantly reduced in the presence of G2013 as compared to the control group. Cancer cell proliferation was also inhibited under 10-500 µg/mL G2013 treatment. Our results revealed that G2013 has the potential to inhibit PC-3 cell proliferation and reduce the expression of tumour-promoting mediators, COX-2, MMP-2, NF-κB, and IL-8 involved in the progression and metastasis of prostate cancer.
Collapse
Affiliation(s)
- Zahra Bagherian
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ha E, Bang SY, Lim J, Yun JH, Kim JM, Bae JB, Lee HS, Kim BJ, Kim K, Bae SC. Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4 + T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann Rheum Dis 2021; 80:876-883. [PMID: 33436383 DOI: 10.1136/annrheumdis-2020-219152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE CD4+ T cells have been suggested as the most disease-relevant cell type in rheumatoid arthritis (RA) in which RA-risk non-coding variants exhibit allele-specific effects on regulation of RA-driving genes. This study aimed to understand RA-specific signatures in CD4+ T cells using multi-omics data, interpreting inter-omics relationships in shaping the RA transcriptomic landscape. METHODS We profiled genome-wide variants, gene expression and DNA methylation in CD4+ T cells from 82 patients with RA and 40 healthy controls using high-throughput technologies. We investigated differentially expressed genes (DEGs) and differential methylated regions (DMRs) in RA and localised quantitative trait loci (QTLs) for expression and methylation. We then integrated these based on individual-level correlations to inspect DEG-regulating sources and investigated the potential regulatory roles of RA-risk variants by a partitioned-heritability enrichment analysis with RA genome-wide association summary statistics. RESULTS A large number of RA-specific DEGs were identified (n=2575), highlighting T cell differentiation and activation pathways. RA-specific DMRs, preferentially located in T cell regulatory regions, were correlated with the expression levels of 548 DEGs mostly in the same topologically associating domains. In addition, expressional variances in 771 and 83 DEGs were partially explained by expression QTLs for DEGs and methylation QTLs (meQTLs) for DEG-correlated DMRs, respectively. A large number of RA variants were moderately to strongly correlated with meQTLs. DEG-correlated DMRs, enriched with meQTLs, had strongly enriched heritability of RA. CONCLUSION Our findings revealed that the methylomic changes, driven by RA heritability-explaining variants, shape the differential expression of a substantial fraction of DEGs in CD4+ T cells in patients with RA, reinforcing the importance of a multidimensional approach in disease-relevant tissues.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jiwoo Lim
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Ho Yun
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Jeong-Min Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Jae-Bum Bae
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| |
Collapse
|