1
|
Wu Y, Ding C, Liu C, Dan L, Xu H, Li X, Li Y, Song X, Zhang D. Schisandrol A, the Major Active Constitute in Schisandra chinensis: A Review of Its Preparation, Biological Activities, and Pharmacokinetics Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:717-752. [PMID: 38716620 DOI: 10.1142/s0192415x24500290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Schisandra chinensis (S. chinensis) has a long history as a traditional Chinese medicine that is astringent, beneficial to vital energy, tonifies the kidney, tranquilizes the heart, etc. Significantly, Schisandrol A (SA) is extracted from S. chinensis and shows surprising and satisfactory biological activity, including anti-inflammatory, hepatoprotective, cardiovascular protection, and antitumor properties, among others. SA has a more pronounced protective effect on central damaged nerves among its numerous pharmacological effects, improving neurodegenerative diseases such as Alzheimer's and Parkinson's through the protection of damaged nerve cells and the enhancement of anti-oxidant capacity. Pharmacokinetic studies have shown that SA has a pharmacokinetic profile with a rapid absorption, wide distribution, maximal concentration in the liver, and primarily renal excretion. However, hepatic and intestinal first-pass metabolism can affect SA's bioavailability. In addition, the content of SA, as an index component of S. chinensis Pharmacopoeia, should not be less than 0.40%, and the content of SA in S. chinensis compound formula was determined with the help of high-performance liquid chromatography (HPLC), which is a stable and reliable method, and it can lay a foundation for the subsequent quality control. Therefore, this paper systematically reviews the preparation, pharmacological effects, pharmacokinetic properties, and content determination of SA with the goal of updating and deepening the understanding of SA, as well as providing a theoretical basis for the study of SA at a later stage.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chao Ding
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chenwang Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Linwei Dan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Haonan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xinzhuo Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| |
Collapse
|
2
|
Kim JS, Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury. Antioxidants (Basel) 2023; 12:1556. [PMID: 37627551 PMCID: PMC10451536 DOI: 10.3390/antiox12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jang-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| | - Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| |
Collapse
|
3
|
Ahmed A, Zeng G, Azhar M, Wang F, Wang J, Fan B, Liu X, Jiang D, Wang Q. Combination of Shengmai San and Radix puerariae ameliorates depression-like symptoms in diabetic rats at the nexus of PI3K/BDNF/SYN protein expression. Animal Model Exp Med 2023; 6:211-220. [PMID: 37317044 PMCID: PMC10272924 DOI: 10.1002/ame2.12333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Hyperglycemia is a characteristic feature of diabetes that often results in neuropsychological complications such as depression. Diabetic individuals are more vulnerable to experience depression compared to the normal population. Thus, novel treatment approaches are required to reduce depressive symptoms among diabetic individuals. Traditional Chinese medicines (TCMs) such as Shengmai San (SMS) and Radix puerariae (R) are usually widely used to treat ailments such as neurological complications since ancient time. METHODS In this study, SMS was combined with R to prepare an R-SMS formulation and screened for their antidepressant activity in diabetic rats. The antidepressant potential of the prepared combination was evaluated behaviorally using open field test, novelty-induced hypophagia, and forced swim test in diabetic rats with biochemical and protein expression (PI3K, BDNF [brain-derived neurotrophic factor], and SYN [presynaptic vesicle protein]) analysis. RESULTS Diabetic rats (streptozotocin, 45 mg/kg) showed elevated fasting blood glucose (FBG) >12 mM with depressive symptoms throughout the study. Treatment with R-SMS (0.5, 1.5, and 4.5 g/kg) significantly reverted depressive symptoms in diabetic rats as evinced by significantly (p < 0.05) reduced immobility time with an increased tendency to eat food in a novel environment. Treatment with R-SMS also significantly increased the protein expression of PI3K, BDNF, and SYN protein, which play a crucial role in depression. CONCLUSION This study showed that R-SMS formulation antagonized depressive symptoms in diabetic rats; thus, this formulation might be studied further to develop as an antidepressant.
Collapse
Affiliation(s)
- Ayaz Ahmed
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Mudassar Azhar
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Fengzhong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Jingru Wang
- Research Center for Pharmacodynamic, Material Basis and Mechanism of ActionCollege of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Bei Fan
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
| | - Xinmin Liu
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
- Institute of Drug Discovery TechnologyNingbo UniversityNingboChina
| | - Dejiang Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of DrugsChangshaChina
| | - Qiong Wang
- Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation CenterThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
4
|
Guo HH, Shen HR, Tang MZ, Sheng N, Ding X, Lin Y, Zhang JL, Jiang JD, Gao TL, Wang LL, Han YX. Microbiota-derived short-chain fatty acids mediate the effects of dengzhan shengmai in ameliorating cerebral ischemia via the gut-brain axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116158. [PMID: 36638854 DOI: 10.1016/j.jep.2023.116158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ming-Ze Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lu-Lu Wang
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
6
|
Catalpol Exerts Antidepressant-Like Effects by Enhancing Anti-oxidation and Neurotrophy and Inhibiting Neuroinflammation via Activation of HO-1. Neurochem Res 2022; 47:2975-2991. [PMID: 35668334 DOI: 10.1007/s11064-022-03641-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Catalpol is an iridoid glycoside with rich content, rich nutrition, and numerous biological activities in Rehmanniae Radix contained in classic antidepressant prescriptions in Chinese clinical medicine. Catalpol has been confirmed previously its exact antidepressant-like effect involved heme oxygenase (HO)-1, but its antidepressant molecular targets and mechanism are still unclear. Here, catalpol's antidepressant-like molecular target was diagnosed and confirmed by ZnPP intervention [the antagonist of HO-1, (10 μg/rat), intracerebroventricular] for the first time, and its molecule mechanism network was determined through HO-1 related pathway and molecules in the hippocampus. Results showed that ZnPP significantly abolished catalpol's (10 mg/kg) reversal on depressive-like behaviors of chronic unpredictable mild stress rats, abolished catalpol's up-regulation on the phosphorylation level of extracellular regulated protein kinases (ERK)1/2 and brain-derived neurotrophic factor (BDNF)'s receptor tropomyosin-related kinase B (TrkB), the nuclear expression level of nuclear factor E 2-related factor 2 (Nrf2), the levels of anti-oxidant factors (such as HO-1, SOD, GPX, GST, GSH) and BDNF, and abolished catalpol's down-regulation on the levels of peroxide and neuroinflammation factors [cyclooxygenase-2 (COX-2), induced nitrogen monoxide synthase (iNOS), nitric oxide (NO)]. Thus, HO-1 could serve as an important potential molecular target for catalpol's antidepressant-like process, and the antidepressant-like mechanism of catalpol could at least involve the activation of HO-1 triggering the up-regulation of the ERK1/2/Nrf2/HO-1 pathway-related factors to enhance the anti-oxidant defense, triggering the down-regulation of the COX-2/iNOS/NO pathway-related factors to inhibit neuroinflammation, and triggering the up-regulation of the BDNF/TrkB pathway to enhance neurotrophy.
Collapse
|
7
|
Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 2021; 414:113463. [PMID: 34280458 DOI: 10.1016/j.bbr.2021.113463] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) can activate the extracellular regulated protein kinase (ERK)/cAMP response element binding protein (CREB) cascade revealing an important role in antidepressant effects. Here, we studied the neuroprotective effect of baicalin (BA) in mice with chronic unpredictable mild stress (CUMS)-induced via a BDNF/ERK/CREB signaling pathway. Depression was induced via six weeks of CUMS in male ICR mice, and drug therapy was given simultaneously for the last three weeks. Cognitive dysfunctions were then evaluated via sucrose preference test (SPT), open field test (OFT), Morris water maze test (MWM), tail suspension test (TST), and novelty suppressed feeding test (NSF). Western blot and real-time PCR were then used to detect the relative expression of ERK, CREB, p-ERK, and p-CREB. Integrated optical density (IOD) tests of p-ERK and p-CREB were then evaluated via immunofluorescence. The behavior results showed that the cognitive dysfunctions increased in the CUMS group versus the control (CON) group (p < 0.01). There were decreases in fluoxetine (FLU) and BA groups (p < 0.05, p < 0.01). The protein ratios of p-ERK/ERK, p-CREB/CREB and ERK mRNA, and CREB mRNA expression decreased in the CUMS group (p < 0.01) and markedly increased in the FLU and BA groups (p < 0.05, p < 0.01). The IOD value of the p-ERK and p-CREB in the CUMS group was decreased versus the CON group (p < 0.01), and these changes were improved via BA and FLU treatment (p < 0.05, p < 0.01). This study indicated that BA can improve cognitive functions and has antidepressant effects in mice, which may be associated with activation of the BDNF/ERK/CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Jinhu Zhang
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Li Chu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shaodan Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yuan Chen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|