1
|
Phytochemistry and Pharmacology of Medicinal Plants Used by the Tenggerese Society in Java Island of Indonesia. Molecules 2022; 27:molecules27217532. [DOI: 10.3390/molecules27217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The archipelagic country of Indonesia is inhabited by 300 ethnic groups, including the indigenous people of Tengger. Based on the reported list of medicinal plants used by the Tengger community, we have reviewed each of them for their phytochemical constituents and pharmacological activities. Out of a total of 41 medicinal plants used by the Tengerrese people, 33 species were studied for their phytochemical and pharmacological properties. More than 554 phytochemicals with diverse molecular structures belonging to different chemical classes including flavonoids, terpenoids, saponins and volatiles were identified from these studied 34 medicinal plants. Many of these medicinal plants and their compounds have been tested for various pharmacological activities including anti-inflammatory, antimicrobial, wound healing, headache, antimalarial and hypertension. Five popularly used medicinal plants by the healers were Garcinia mangostana, Apium graveolens, Cayratia clematidea, Drymocallis arguta and Elaeocarpus longifolius. Only A. graviolens were previously studied, with the outcomes supporting the pharmacological claims to treat hypertension. Few unexplored medicinal plants are Physalis lagascae, Piper amplum, Rosa tomentosa and Tagetes tenuifolia, and they present great potential for biodiscovery and drug lead identification.
Collapse
|
2
|
Cui D, Liu L, Zhao T, Zhan Y, Song J, Zhang W, Yin D, Chang Y. Responses of sea urchins (Strongylocentrotus intermedius) with different sexes to CO 2-induced seawater acidification: Histology, physiology, and metabolomics. MARINE POLLUTION BULLETIN 2022; 178:113606. [PMID: 35378459 DOI: 10.1016/j.marpolbul.2022.113606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Responses of different sexes of farmed Strongylocentrotus intermedius to chronic CO2-induced seawater acidification were investigated in 120-day lab-based experiments. Four experimental groups were set up as one control group and three seawater acidification groups. The results showed that 1) Specific growth rate and the numbers of mature gamete cells declined in a pH-dependent way in both sexes of adult S. intermedius. 2) There were differences in SDMs identified in females and males reared in acidified seawater reflecting sex-specific response variation in adult S. intermedius. 3) The number of altered metabolic pathways exhibited a linear increasing trend as seawater pH declined in both sexes of adult S. intermedius. Meanwhile seawater acidification might affect metabolic processes via changing the relative expression and activity of key enzymes controlling the corresponding metabolic pathways of adult S. intermedius.
Collapse
Affiliation(s)
- Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
3
|
Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated with M. communis extract and its antibacterial activity. AMB Express 2021; 11:85. [PMID: 34110520 PMCID: PMC8192652 DOI: 10.1186/s13568-021-01247-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Considering the prevalence of resistance to antibiotics, the discovery of effective agents against resistant pathogens is of extreme urgency. Herein, 26 mecA-positive methicillin-resistant S. aureus (MRSA) isolated from clinical samples were identified, and their resistance to 11 antibiotics was investigated. Next, the antibacterial and anti-biofilm activity of the ethanolic extract of M. communis on these strains was evaluated. Furthermore, the effect of this extract on the expression of biofilm-associated genes, icaA, icaD, bap, sarA, and agr, was studied. According to the results, all isolated strains were multidrug-resistant and showed resistance to oxacillin and tetracycline. Also, 96.15 and 88.46 % of them were resistant to gentamicin and erythromycin. However, the extract could effectively combat the strains. The minimum inhibitory concentration (MIC) against different strains ranged from 1.56 to 25 mg/ml and the minimum bactericidal concentration (MBC) was between 3.125 and 50 mg/ml. Even though most MRSA (67 %) strongly produced biofilm, the sub-MIC concentration of the extract destroyed the pre-formed biofilm and affected the bacterial cells inside the biofilm. It could also inhibit biofilm development by significantly decreasing the expression of icaA, icaD, sarA and bap genes involved in biofilm formation and development. In conclusion, the extract inhibits biofilm formation, ruins pre-formed biofilm, and kills cells living inside the biofilm. Furthermore, it down-regulates the expression of necessary genes and nips the biofilm formation in the bud.
Collapse
|
4
|
Anti-quorum sensing and antibiofilm potential of 1,8-cineole derived from Musa paradisiaca against Pseudomonas aeruginosa strain PAO1. World J Microbiol Biotechnol 2021; 37:66. [PMID: 33740144 DOI: 10.1007/s11274-021-03029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is one of the vulnerable opportunistic pathogens associated with nosocomial infections, cystic fibrosis, burn wounds and surgical site infections. Several studies have reported that quorum sensing (QS) systems are controlled the P. aeruginosa pathogenicity. Hence, the targeting of QS considered as an alternative approach to control P. aeruginosa infections. This study aimed to evaluate the anti-quorum sensing and antibiofilm inhibitory potential of Musa paradisiaca against Chromobacterium violaceum (ATCC 12472) and Pseudomonas aeruginosa. The methanol extract of M. paradisiacsa exhibits that better antibiofilm potential against P. aeruginosa. Then, the crude methanol extract was subjected to purify by column chromatography and collected the fractions. The mass-spectrometric analysis of a methanol extract of M. paradisiaca revealed that 1,8-cineole is the major compounds. 1, 8-cineole significantly inhibited the QS regulated violacein production in C. violaceum. Moreover, 1,8-cineole significantly inhibited the QS mediated virulence production and biofilm formation of P. aeruginosa without affecting their growth. The real-time PCR analysis showed the downregulation of autoinducer synthase and transcriptional regulator genes upon 1,8-cineole treatment. The findings of the present study strongly suggested that metabolite of M. paradisiaca impedes P. aeruginosa QS system and associated virulence productions.
Collapse
|
5
|
Muthamil S, Prasath KG, Priya A, Precilla P, Pandian SK. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci Rep 2020; 10:5113. [PMID: 32198447 PMCID: PMC7083969 DOI: 10.1038/s41598-020-61918-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is a commensal fungus in humans, mostly found on the mucosal surfaces of the mouth, gut, vagina and skin. Incidence of ever increasing invasive candidiasis in immunocompromised patients, alarming occurrence of antifungal resistance and insufficient diagnostic methods demand more focused research into C. albicans pathogenicity. Consequently, in the present study, oleic acid from Murraya koenigii was shown to have the efficacy to inhibit biofilm formation and virulence of Candida spp. Results of in vitro virulence assays and gene expression analysis, impelled to study the protein targets which are involved in the molecular pathways of C. albicans pathogenicity. Proteomic studies of differentially expressed proteins reveals that oleic acid induces oxidative stress responses and mainly targets the proteins involved in glucose metabolism, ergosterol biosynthesis, lipase production, iron homeostasis and amino acid biosynthesis. The current study emphasizes anti-virulent potential of oleic acid which can be used as a therapeutic agent to treat Candida infections.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | - Pitchai Precilla
- Department of Biotechnology Science Campus Alagappa University Karaikudi, 630 003, Tamil Nadu, India
| | | |
Collapse
|
6
|
Rubini D, Banu SF, Subramani P, Hari BNV, Gowrishankar S, Pandian SK, Wilson A, Nithyanand P. Extracted chitosan disrupts quorum sensing mediated virulence factors in Urinary tract infection causing pathogens. Pathog Dis 2019; 77:5364546. [PMID: 30801640 DOI: 10.1093/femspd/ftz009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) plays an important role during the aetiology of urinary tract infection (UTI), as several virulence factors are under the regulation of QS. Pseudomonas aeruginosa and Serratia marcescens, the primary causative agents of UTI, employ acyl homoserine lactone (AHL) as signal molecules to coordinate various virulence factors. In this present study, chitosan extracted from the marine crab Portunus sanguinolentus was screened for its ability to inhibit the QS-signaling molecules of P. aeruginosa (PA01) and few clinical isolates of P. aeruginosa and S. marcescens. The extracted chitosan on comparison with a commercial chitosan showed significant inhibition of several QS-dependent virulence factors in P. aeruginosa and S. marscenes. Furthermore, qPCR analysis was carried out to confirm the down-regulation of fimA, fimC and flhD genes involved in adhesion and pathogenesis of S. marcescens and lasI and rhlI genes that governs the P. aeruginosa quorum sensing system. Moreover, the chitosan when coated on a catheter was also able to disrupt the mature biofilms which was revealed by scanning electron microscopy. Collectively, the present study showcases the QS inhibitory property of extracted chitosan from crab shells which is being discarded as a recalcitrant biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Prabha Subramani
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi - 630004, Tamil Nadu, India
| | | | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, 11021 Campus Street, Loma Linda, California 92350, USA
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| |
Collapse
|
7
|
Mohanvel SK, Ravichandran V, Kamalanathan C, Satish AS, Ramesh S, Lee J, Rajasekharan SK. Molecular docking and biological evaluation of novel urea-tailed mannich base against Pseudomonas aeruginosa. Microb Pathog 2019; 130:104-111. [DOI: 10.1016/j.micpath.2019.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
8
|
Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Front Microbiol 2018; 9:2835. [PMID: 30534118 PMCID: PMC6275436 DOI: 10.3389/fmicb.2018.02835] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
In recent decades, fungal infections have incredibly increased with Candida genus as the major cause of morbidity and mortality in hospitalized and immunocompromised patients. Most of the Candida species are proficient in biofilm formation on implanted medical devices as well as human tissues. Biofilm related Candida infections are very difficult to treat using common antifungal agents owing to their increased drug resistance. To address these issues, the present study investigated the antibiofilm and antivirulent properties of Syzygium cumini derived quinic acid in combination with known antifungal compound undecanoic acid. Initially, antibiofilm potential of S. cumini leaf extract was assessed and the active principles were identified through gas chromatography and mass spectrometry analysis. Among the compounds identified, quinic acid was one of the major compounds. The interaction between quinic acid and undecanoic acid was found to be synergistic in the Fractional inhibitory concentration index (≤0.5). Results of in vitro assays and gene expression analysis suggested that the synergistic combinations of quinic acid and undecanoic acid significantly inhibited virulence traits of Candida spp. such as the biofilm formation, yeast-to-hyphal transition, extracellular polymeric substances production, filamentation, secreted hydrolases production and ergosterol biosynthesis. In addition, result of in vivo studies using Caenorhabditis elegans demonstrated the non-toxic nature of QA-UDA combination and antivirulence effect against Candida spp. For the first time, synergistic antivirulence ability of quinic acid and undecanoic acid was explored against Candida spp. Thus, results obtained from the present study suggest that combination of phytochemicals might be used an alternate therapeutic strategy for the prevention and treatment of biofilm associated Candida infection.
Collapse
|
9
|
Santhakumari S, Jayakumar R, Logalakshmi R, Prabhu NM, Abdul Nazar AK, Karutha Pandian S, Veera Ravi A. In vitro and in vivo effect of 2,6-Di-tert-butyl-4-methylphenol as an antibiofilm agent against quorum sensing mediated biofilm formation of Vibrio spp. Int J Food Microbiol 2018; 281:60-71. [DOI: 10.1016/j.ijfoodmicro.2018.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
|
10
|
Manner S, Fallarero A. Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria. Int J Mol Sci 2018; 19:ijms19051346. [PMID: 29751512 PMCID: PMC5983823 DOI: 10.3390/ijms19051346] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023] Open
Abstract
Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives (n = 3040) was screened for anti-quorum sensing activity using Chromobacterium violaceum as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against C. violaceum, complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in Escherichia coli and Pseudomonas aeruginosa was further investigated. Finally, effects of these leads on swimming and swarming motility of P. aeruginosa were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.
Collapse
Affiliation(s)
- Suvi Manner
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, FI-20520 Turku, Finland.
| | - Adyary Fallarero
- Pharmaceutical Design and Discovery (PharmDD), Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
11
|
Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida
spp. J Basic Microbiol 2018; 58:343-357. [DOI: 10.1002/jobm.201700529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - Vivekanandham Amsa Devi
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | | | | | | |
Collapse
|
12
|
In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK. l-Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra02934a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the present study, the antibiofilm, antipathogenic and anticarotenogenic potential ofl-ascorbyl 2,6-dipalmitate (ADP) against methicillin-resistantStaphylococcus aureus(MRSA) has been evaluated.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | - Alaguvel Valliammai
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | | |
Collapse
|
14
|
Rama Devi K, Srinivasan R, Kannappan A, Santhakumari S, Bhuvaneswari M, Rajasekar P, Prabhu NM, Veera Ravi A. In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. BIOFOULING 2016; 32:1171-1183. [PMID: 27739324 DOI: 10.1080/08927014.2016.1237220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/12/2016] [Indexed: 05/21/2023]
Abstract
Rosmarinic acid (RA) was assessed for its quorum sensing inhibitory (QSI) potential against Aeromonas hydrophila strains AH 1, AH 12 and MTCC 1739. The pathogenic strains of A. hydrophila were isolated from infected zebrafish and identified through biochemical analysis and amplification of a species-specific gene (rpsL). The biofilm inhibitory concentration (BIC) of RA against A. hydrophila strains was found to be 750 μg ml-1. At this concentration, RA reduced the QS mediated hemolysin, lipase and elastase production in A. hydrophila. In FT-IR analysis, RA treated A. hydrophila cells showed a reduction in cellular components. Gene expression analysis confirmed the down-regulation of virulence genes such as ahh1, aerA, lip and ahyB. A. hydrophila infected zebrafish upon treatment with RA showed increased survival rates. Thus, the present study demonstrates the use of RA as a plausible phytotherapeutic compound to control QS mediated biofilm formation and virulence factor production in A. hydrophila.
Collapse
Affiliation(s)
- Kannan Rama Devi
- a Department of Biotechnology , Alagappa University , Karaikudi , India
| | | | | | | | | | - Periyannan Rajasekar
- b Department of Animal Health and Management , Alagappa University , Karaikudi , India
| | | | | |
Collapse
|