1
|
Covato C, Pilipenco A, Scheberl A, Reimhult E, Subbiahdoss G. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus. Colloids Surf B Biointerfaces 2024; 245:114336. [PMID: 39489986 DOI: 10.1016/j.colsurfb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
Collapse
Affiliation(s)
- Carmelo Covato
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Alina Pilipenco
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 18200, Czech Republic
| | - Andrea Scheberl
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Guruprakash Subbiahdoss
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria.
| |
Collapse
|
2
|
Siddiqui DA, Lakkasetter Chandrashekar B, Natarajan SG, Palmer KL, Rodrigues DC. Development of a Coculture Model for Assessing Competing Host Mammalian Cell and Bacterial Attachment on Zirconia versus Titanium. ACS Biomater Sci Eng 2024; 10:6218-6229. [PMID: 39312708 DOI: 10.1021/acsbiomaterials.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives: Coculture models are limited by bacteria rapidly outcompeting host mammalian cells for nutrients in vitro, resulting in mammalian cell death. The goal of this study was to develop a coculture model enabling survival of mammalian cells and oral bacterial species to assess their competition for growth on dental implant materials. Methods: Two early colonizing oral bacterial species, Streptococcus mutans or Actinomyces naeslundii, were grown in coculture with primary human macrophages or human gingival fibroblasts for up to 7 days on tissue-culture treated polystyrene or polished titanium and zirconia disks. Chloramphenicol was supplemented in cell culture medium at bacteriostatic concentrations to maintain stable bacterial inoculum size. Planktonic and adherent bacterial growth was assessed via spot plating while mammalian cell growth and attachment were evaluated using colorimetric metabolic assay and confocal fluorescence microscopy, respectively. Results: Macrophages and fibroblasts proliferated in the presence of S. mutans and maintained viability above 70% during coculture for up to 7 days on tissue-culture treated polystyrene and polished titanium and zirconia. In contrast, both mammalian cell types exhibited decreasing proliferation and surface coverage on titanium and zirconia over time in coculture with A. naeslundii versus control. S. mutans and A. naeslundii were maintained within an order of magnitude of seeding inoculum sizes throughout coculture. Significance: Cell culture medium supplemented with antibiotics at bacteriostatic concentrations can suppress bacterial overgrowth and facilitate mammalian cell viability in coculture model systems. Within the study's limitations, oral bacteria and mammalian cell growth in coculture are comparable on polished titanium and zirconia surfaces.
Collapse
Affiliation(s)
- Danyal A Siddiqui
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | | | - Smriti G Natarajan
- Texas A&M University School of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246, United States
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int J Mol Sci 2021; 22:10243. [PMID: 34638591 PMCID: PMC8549706 DOI: 10.3390/ijms221910243] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related implant infections (BRII) are a disastrous complication of both elective and trauma orthopaedic surgery and occur when an implant becomes colonised by bacteria. The definitive treatment to eradicate the infections once a biofilm has established is surgical excision of the implant and thorough local debridement, but this carries a significant socioeconomic cost, the outcomes for the patient are often poor, and there is a significant risk of recurrence. Due to the large volumes of surgical procedures performed annually involving medical device implantation, both in orthopaedic surgery and healthcare in general, and with the incidence of implant-related infection being as high as 5%, interventions to prevent and treat BRII are a major focus of research. As such, innovation is progressing at a very fast pace; the aim of this study is to review the latest interventions for the prevention and treatment of BRII, with a particular focus on implant-related approaches.
Collapse
Affiliation(s)
- Emérito Carlos Rodríguez-Merchán
- Department of Orthopaedic Surgery, La Paz University Hospital, 28046 Madrid, Spain
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| | - Donald J. Davidson
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
| | - Alexander D. Liddle
- Eastman Dental Institute, University College London, London WC1E 6BT, UK; (D.J.D.); (A.D.L.)
- MSk Lab, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Tran HA, Tran PA. In Situ Coatings of Silver Nanoparticles for Biofilm Treatment in Implant-Retention Surgeries: Antimicrobial Activities in Monoculture and Coculture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41435-41444. [PMID: 34448395 DOI: 10.1021/acsami.1c08239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial biofilms are indicated in most medical device-associated infections. Treating these biofilms is challenging yet critically important for applications such as in device-retention surgeries, which can have reinfection rates of up to 80%. This in vitro study centered around our new method of treating biofilm and preventing reinfection. Ionic silver (Ag, in the form of silver nitrate) combined with dopamine and a biofilm-lysing enzyme (α-amylase) were applied to model 4-day-old Staphylococcus aureus biofilms on titanium substrates to degrade the extracellular matrix of the biofilm and kill the biofilm bacteria. In this process, the oxidative self-polymerization of dopamine converted Ag ions into Ag nanoparticles that, together with the resultant self-adhering polydopamine (PDA), formed coatings that strongly bound to the treated substrates. Surprisingly, although these Ag/PDA coatings significantly reduced S. aureus growth in standard bacterial monoculture, they showed much lower antimicrobial activity in coculture of the bacteria and osteoblastic MC3T3-E1 cells in which the bacteria were also found attached to the osteoblasts. This S. aureus- osteoblast interaction was also linked to bacterial survival against gentamicin treatment observed in coculture. Our study thus provided clear evidence suggesting that bacteria's interactions with tissue cells surrounding implants may significantly contribute to their resistance to antimicrobial treatment.
Collapse
Affiliation(s)
- Hien A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
5
|
Lim PN, Wang Z, Tong SY, Ho B, Wang W, Aizawa M, Yang Z, Thian ES. Silver, silicon co-substituted hydroxyapatite modulates bacteria-cell competition for enhanced osteogenic function. Biomed Mater 2021; 16. [PMID: 34375969 DOI: 10.1088/1748-605x/ac1c62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Combating bacteria while promoting tissue regeneration is an aim of highest priority for employing biomaterials in orthopedics that often embroiled with pre-operative contamination. Through simulating a surgical site infection environment and an infected implant site, we showcase the ability of a functionally modified hydroxyapatite, Ag,Si-HA that permits preferential adhesion of human bone marrow derived mesenchymal stem cells (BMSCs) over co-cultured bacterial pathogen,Pseudomonas aeruginosa, by displaying immediate suppression and killing of the bacteria present with minimum cytotoxicity for 28 d. And, at the same time, Ag,Si-HA stimulates BMSCs towards osteogenic differentiation despite being within the contaminated milieu. These findings provide well-defined requirements for incorporating antibacterial properties to biomaterials in managing pre-operative contamination. In addition, it highlights the dual positive attributes of Ag,Si-HA as an effective antibacterial biomaterial and at the same time, promotes bone tissue regeneration.
Collapse
Affiliation(s)
- Poon Nian Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
| | - Shi Yun Tong
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Bow Ho
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Zhijie Yang
- Zhejiang Biocare Biotechnology Co. Ltd, Shaoxing, People's Republic of China
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Miola M, Massera J, Cochis A, Kumar A, Rimondini L, Vernè E. Tellurium: A new active element for innovative multifunctional bioactive glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111957. [PMID: 33812585 DOI: 10.1016/j.msec.2021.111957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 02/07/2021] [Indexed: 12/28/2022]
Abstract
Bioactive glasses have been widely investigated for their ability to release ions with therapeutic effect. In this paper, a silica based bioactive glass was doped with a low amount of tellurium dioxide (1 and 5 mol%) to confer antibacterial and antioxidant properties. The obtained glasses were characterized in terms of morphology, composition, structure, characteristic temperatures and in vitro bioactivity. Moreover, comprehensive analyses were carried out to estimate the cytocompatibility, the antibacterial and antioxidant properties of Te-doped glasses. The performed characterizations demonstrated that the Te insertion did not interfere with the amorphous nature of the glass, the substitution of SiO2 with TeO2 led to a slight decrease in Tg and a TeO2 amount higher than 1 mol% can induce a change in the primary crystal field. In vitro bioactivity test demonstrated the Te-doped glass ability to induce the precipitation of hydroxyapatite. Finally, the biological characterization showed a strong antibacterial and antioxidant effects of Te-containing glasses in comparison with the control glass, demonstrating that Te is a promising element to enhance the biological response of biomaterials.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, TO, Italy; PolitoBioMED Lab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, TO, Italy.
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Laboratory of Biomaterials and Tissue Engineering, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Andrea Cochis
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Ajay Kumar
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, TO, Italy; PolitoBioMED Lab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, TO, Italy
| |
Collapse
|
7
|
de Camargo Reis Mello D, Rodrigues LM, D'Antola Mello FZ, Gonçalves TF, Ferreira B, Schneider SG, de Oliveira LD, de Vasconcellos LMR. Biological and microbiological interactions of Ti-35Nb-7Zr alloy and its basic elements on bone marrow stromal cells: good prospects for bone tissue engineering. Int J Implant Dent 2020; 6:65. [PMID: 33099690 PMCID: PMC7585585 DOI: 10.1186/s40729-020-00261-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. METHODS Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. RESULTS All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. CONCLUSION Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.
Collapse
Affiliation(s)
- Daphne de Camargo Reis Mello
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Lais Morandini Rodrigues
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
- Oakland University, Mathematics and Science, 318 Meadow Brook Rd, Rochester Hills, USA
| | - Fabia Zampieri D'Antola Mello
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Thais Fernanda Gonçalves
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Bento Ferreira
- Escola de Engenharia de Lorena (EEL-USP), Pólo-Urbo Industrial, Gleba Al-6, S/N, Lorena, SP, Brazil
| | | | - Luciane Dias de Oliveira
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, São José dos Campos School of Dentistry, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
8
|
Cochis A, Barberi J, Ferraris S, Miola M, Rimondini L, Vernè E, Yamaguchi S, Spriano S. Competitive Surface Colonization of Antibacterial and Bioactive Materials Doped with Strontium and/or Silver Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E120. [PMID: 31936394 PMCID: PMC7022475 DOI: 10.3390/nano10010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Nowadays, there is a large amount of research aimed at improving the multifunctional behavior of the biomaterials for bone contact, including the concomitant ability to induce apatite formation (bioactivity), fast and effective osteoblasts colonization, and antibacterial activity. The aim of this study is to develop antibacterial and bioactive surfaces (Ti6Al4V alloy and a silica-based bioactive glass) by chemical doping with strontium and/or silver ions. The surfaces were characterized by Scanning Electron Microscopy equipped with Energy Dispersive X ray Spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM). To better focus on the cells-bacteria competition for the implant surface, in addition to the standard assays for the evaluation of the bacteria adhesion (ISO22196) and for single-cell cultures or biofilm formation, an innovative set of co-cultures of cells and bacteria is here proposed to simulate a competitive surface colonization. The results suggest that all the bioactive tested materials were cytocompatible toward the bone progenitor cells representative for the self-healing process, and that the doped ones were effective in reducing the surface colonization from a pathogenic drug-resistant strain of Staphylococcus aureus. The co-cultures experiments demonstrated that the doped surfaces were able to protect the adhered osteoblasts from the bacteria colonization as well as prevent the infection prior to the surface colonization by the osteoblasts.
Collapse
Affiliation(s)
- Andrea Cochis
- Department of Health Science Università del Piemonte Orientale UPO, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, 28100 Novara, Italy
| | - Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Interdipartimental Laboratory PolitoBIOMedLab, Politecnico di Torino, 10129 Torino, Italy
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Interdipartimental Laboratory PolitoBIOMedLab, Politecnico di Torino, 10129 Torino, Italy
| | - Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Interdipartimental Laboratory PolitoBIOMedLab, Politecnico di Torino, 10129 Torino, Italy
| | - Lia Rimondini
- Department of Health Science Università del Piemonte Orientale UPO, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, 28100 Novara, Italy
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Interdipartimental Laboratory PolitoBIOMedLab, Politecnico di Torino, 10129 Torino, Italy
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Interdipartimental Laboratory PolitoBIOMedLab, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
9
|
Abstract
Prosthetic joint infection (PJI) is associated with poor clinical outcomes and is expensive to treat.Although uncommon overall (affecting between 0.5% and 2.2% of cases), PJI is one of the most commonly encountered complications of joint replacement and its incidence is increasing, putting a significant burden on healthcare systems.Once established, PJI is extremely difficult to eradicate as bacteria exist in biofilms which protect them from antibiotics and the host immune response.Improved understanding of the microbial pathology in PJI has generated potential new treatment strategies for prevention and eradication of biofilm associated infection including modification of implant surfaces to prevent adhesion of bacteria.Much research is currently ongoing looking at different implant surface coatings and modifications, and although most of this work has not translated into clinical medicine there has been some early clinical success. Cite this article: EFORT Open Rev 2019;4:633-639. DOI: 10.1302/2058-5241.4.180095.
Collapse
Affiliation(s)
- Donald J Davidson
- Research Department of Orthopaedics and Musculoskeletal Sciences, University College London, London, UK.,Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - David Spratt
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Alexander D Liddle
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK.,MSK Lab, Imperial College London, London, UK
| |
Collapse
|
10
|
Martínez-Pérez M, Conde A, Arenas MA, Mahíllo-Fernandez I, de-Damborenea JJ, Pérez-Tanoira R, Pérez-Jorge C, Esteban J. The "Race for the Surface" experimentally studied: In vitro assessment of Staphylococcus spp. adhesion and preosteoblastic cells integration to doped Ti-6Al-4V alloys. Colloids Surf B Biointerfaces 2018; 173:876-883. [PMID: 30551304 DOI: 10.1016/j.colsurfb.2018.10.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Implant-related infection is a devastating complication in orthopedic surgery. Aiming to minimize this problem, many material modifications have been developed. Here we report a study of a surface modification of Ti-6 Al-4 V alloy using a methodology that enables the study of interactions between bacteria and the material in the presence of eukaryotic cells. METHODS We mixed different concentrations of collection or clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells using a previously published methodology, analyzing the minimal concentration of bacteria able to colonize the surface of the material through image analysis. Ti-6 Al-4 V alloy was modified by anodization to obtain two F-doped nanostructured surfaces that have been previously described to have antibacterial properties. RESULTS Our results show similar bacterial adhesion results to nanoporous and nanotubular F-doped surfaces. The presence of preosteoblastic cells increases the adherence of all bacterial strains to both structures. No effect of the surface on eukaryotic cells adherence was detected. CONCLUSION To our knowledge, this is the first time that anin vitro study emulating the race for the surface evaluates and compares the osseointegration and antibacterial properties between two nanostructured- modified titanium alloy surfaces. Clinical strains show different behavior from collection ones in bacterial adherence. The presence of cells increased bacterial adherence. NP and NT surface modifications didn´t show significant differences in bacterial adhesion and preosteoblastic cells integration.
Collapse
Affiliation(s)
- Marta Martínez-Pérez
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Ana Conde
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid, Spain.
| | - María-Angeles Arenas
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid, Spain.
| | - Ignacio Mahíllo-Fernandez
- Department of Statistics, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Juan-José de-Damborenea
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid, Spain.
| | - Ramón Pérez-Tanoira
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Concepción Pérez-Jorge
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Chu L, Yang Y, Yang S, Fan Q, Yu Z, Hu XL, James TD, He XP, Tang T. Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Front Microbiol 2018; 9:2219. [PMID: 30333796 PMCID: PMC6176048 DOI: 10.3389/fmicb.2018.02219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Implant-related infection is a devastating complication in clinical trauma and orthopedics. The aim of this study is to use a bifunctional biomaterial surface in order to investigate the competitive colonization between osteoblasts and bacteria, which is the cause of implant-related infection. A bone-engineering material capable of simultaneously facilitating osteoblast adhesion and inhibiting the growth of Staphylococcus aureus (S. aureus) was prepared. Then, three different co-cultured systems were developed in order to investigate the competitive colonization between the two cohorts on the surface. The results suggested that while the pre-culturing of either cohort compromised the subsequent adhesion of the other according to the ‘race for the surface’ theory, the synergistic effect of preferential cell adhesion and antibacterial activity of the bifunctional surface led to the predominant colonization and survival of osteoblasts, effectively inhibiting the bacterial adhesion and biofilm formation of S. aureus in the co-culture systems with both cohorts. This research offers new insight into the investigation of competitive surface-colonization between osteoblasts and bacteria for implant-related infection.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Wahl P, Sprecher CM, Brüning C, Meier C, Milz S, Gautier E, Fintan Moriarty T. Successful bony integration of a porous tantalum implant despite longlasting and ongoing infection: Histologic workup of an explanted shoulder prosthesis. J Biomed Mater Res B Appl Biomater 2018; 106:2924-2931. [PMID: 30199602 DOI: 10.1002/jbm.b.34174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/25/2018] [Accepted: 05/13/2018] [Indexed: 01/30/2023]
Abstract
Infection associated with an implant is a complication feared in surgery, as it leads to loosening and dysfunction. This report documents an unexpected good bony integration of a porous tantalum shoulder prosthesis despite infection. A shoulder prosthesis with a porous tantalum glenoidal base plate was retrieved after 3 years of ongoing infection with Staphylococcus spp. Methyl-methacrylate embedded sections of the retrieved glenoidal component were analyzed by optical and scanning electron beam microscopy (SEM). Bone ongrowth and ingrowth were quantified. Bone had formed at the implant surface and within the open cell structure of the porous tantalum. The bone implant contact index was 32%. The bone ingrowth or relative bone area within the open structure was 8.2%, respectively 11.9% in the outer 50% of the thickness. Due to the section thickness, bone ongrowth could best be documented in SEM. Despite long-lasting and ongoing infection, the glenoidal base plate of the prosthesis showed good bony integration upon removal. The bone ingrowth into the porous tantalum was comparable to the values previously reported for the undersurface of retrieved proximal humerus resurfacing implants. Good integration of the implant however did not solve the problem of infection, and related morbidity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2924-2931, 2018.
Collapse
Affiliation(s)
- Peter Wahl
- Division of Orthopaedic and Trauma Surgery, Cantonal Hospital, Winterthur, Switzerland.,Department of Septic Surgery, BG Trauma Centre, Frankfurt, Germany
| | | | | | - Christoph Meier
- Division of Orthopaedic and Trauma Surgery, Cantonal Hospital, Winterthur, Switzerland
| | - Stefan Milz
- Institute of Anatomy, Ludwig-Maximilians-University, Munich, Germany
| | - Emanuel Gautier
- Department of Orthopaedic Surgery, HFR Fribourg-Cantonal Hospital, Fribourg, Switzerland
| | | |
Collapse
|
13
|
Ge W, Li J, Fan W, Xu D, Sun S. Tim-3 as a diagnostic and prognostic biomarker of osteosarcoma. Tumour Biol 2017; 39:1010428317715643. [PMID: 28671022 DOI: 10.1177/1010428317715643] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most frequent primary bone tumor that affects adolescents and children. However, diagnostic and prognostic biomarkers for osteosarcoma remain lacking. (Tim-3) T-cell immunoglobulin domain and mucin domain-3, which negatively regulates T cell helper (Th1) cells and affects cytokine expression, has attracted increasing attention due to its critical role in regulating both adaptive and innate immune cells. In this study, we evaluated serum soluble Tim-3 level in osteosarcoma patients to explore its diagnostic and prognostic value for this particular malignancy. Serum soluble Tim-3 level was measured with enzyme-linked immunosorbent assay in 120 osteosarcoma patients, 120 benign bone tumors patients and 120 healthy controls, followed by analysis of the correlation with clinic pathological characteristics. Receiver operating curves, Kaplan-Meier curves, and log-rank analyses as well as Cox proportional hazard models were used to evaluate the diagnostic and prognostic significance. Serum solubleTim-3 level was remarkably elevated in osteosarcoma patients. Osteosarcoma patients with larger tumor size, late stages and distant metastases were accompanied with higher levels of Tim-3. ROC/AUC analysis indicated thatTim-3 served as a reliable marker to distinguish healthy participants from Tim-3 patients. Osteosarcoma patients with higher Tim-3 had relatively lower survival. Multivariate analyses for overall survival revealed that high serum soluble Tim-3 level was an independent prognostic factor for osteosarcoma. Furthermore, Tim-3 levels of CD8+ and CD4+ T cells were elevated in peripheral circulation of osteosarcoma patients. Therefore, It was indicated in our research that elevated serum soluble Tim-3 level might be a novel potential diagnostic and prognostic biomarker for osteosarcoma patients.
Collapse
Affiliation(s)
- Wenhui Ge
- 1 Department of Paediatrics, Rizhao People's Hospital, Rizhao, China
| | - Jing Li
- 2 Department of Orthopedics & Traumatology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Wenhao Fan
- 2 Department of Orthopedics & Traumatology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Delong Xu
- 2 Department of Orthopedics & Traumatology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Shangfei Sun
- 1 Department of Paediatrics, Rizhao People's Hospital, Rizhao, China
| |
Collapse
|
14
|
Operating room team member role affects room traffic in orthopaedic surgery: a prospective observational study. CURRENT ORTHOPAEDIC PRACTICE 2017. [DOI: 10.1097/bco.0000000000000501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|