1
|
Rumbaugh KP, Whiteley M. Towards improved biofilm models. Nat Rev Microbiol 2025; 23:57-66. [PMID: 39112554 DOI: 10.1038/s41579-024-01086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 12/13/2024]
Abstract
Biofilms are complex microbial communities that have a critical function in many natural ecosystems, industrial settings as well as in recurrent and chronic infections. Biofilms are highly heterogeneous and dynamic assemblages that display complex responses to varying environmental factors, and those properties present substantial challenges for their study and control. In recent years, there has been a growing interest in developing improved biofilm models to offer more precise and comprehensive representations of these intricate systems. However, an objective assessment for ascertaining the ability of biofilms in model systems to recapitulate those in natural environments has been lacking. In this Perspective, we focus on medical biofilms to delve into the current state-of-the-art in biofilm modelling, emphasizing the advantages and limitations of different approaches and addressing the key challenges and opportunities for future research. We outline a framework for quantitatively assessing model accuracy. Ultimately, this Perspective aims to provide a comprehensive and critical overview of medically focused biofilm models, with the intent of inspiring future research aimed at enhancing the biological relevance of biofilm models.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center and Burn Center of Research Excellence, Lubbock, TX, USA.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Emory Children's Cystic Fibrosis Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Goudot S, Mathieu L, Herbelin P, Soreau S, Jorand FPA. Growth dynamic of biofilm-associated Naegleria fowleri in freshwater on various materials. Front Microbiol 2024; 15:1369665. [PMID: 38511008 PMCID: PMC10951111 DOI: 10.3389/fmicb.2024.1369665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
In industrial water systems, the occurrence of biofilm-associated pathogenic free-living amoebae (FLA) such as Naegleria fowleri is a potential hygienic problem, and factors associated with its occurrence remain poorly understood. This study aimed to evaluate the impact of four cooling circuit materials on the growth of N. fowleri in a freshwater biofilm formed at 42°C and under a hydrodynamic shear rate of 17 s-1 (laminar flow): polyvinyl chloride, stainless steel, brass, and titanium. Colonization of the freshwater biofilms by N. fowleri was found to be effective on polyvinyl chloride, stainless steel, and titanium. For these three materials, the ratio of (bacterial prey)/(amoeba) was found to control the growth of N. fowleri. All materials taken together, a maximum specific growth rate of 0.18 ± 0.07 h-1 was associated with a generation time of ~4 h. In contrast, no significant colonization of N. fowleri was found on brass. Therefore, the contribution of copper is strongly suspected.
Collapse
Affiliation(s)
- Sébastien Goudot
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
- Université de Lorraine, CNRS, LCPME, Nancy, France
| | | | - Pascaline Herbelin
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
| | - Sylvie Soreau
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France
| | | |
Collapse
|
3
|
Yu M, Wang L, Feng P, Wang Z, Zhu S. Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 393:130057. [PMID: 37984669 DOI: 10.1016/j.biortech.2023.130057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A novel vertical rotating microalgae-bacteria symbiotic biofilm reactor was built to treat the mixed wastewater containing municipal and soybean soaking wastewater. The reactor was operated in both sequential batch and semi-continuous modes. Under the sequential batch operation mode, the maximum removal rates for Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), and Ammonia Nitrogen (NH4+-N) of the mixed wastewater were 95.6 %, 96.1 %, 97.6 %, and 100 %, respectively. During the semi-continuous operation, the water discharge indices decreased gradually and eventually stabilized. At stabilization, the removal rates of COD, TN, and NH4+-N achieved 98 %, 95 %, and 99.9 %, respectively. The maximum biomass productivity of the biofilm was 2.69 g·m-2·d-1. Additionally, the carbohydrate, protein and lipid comprised approximately 22 %, 51 % and 10 % of the dry weight of Chlorella. This study demonstrates the great potential of the microalgae-bacteria symbiotic biofilm system to treat food and domestic wastewater while harvesting microalgal biomass.
Collapse
Affiliation(s)
- Mingran Yu
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Li Wang
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
4
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
5
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|
6
|
Hou P, Wang T, Zhou B, Song P, Zeng W, Muhammad T, Li Y. Variations in the microbial community of biofilms under different near-wall hydraulic shear stresses in agricultural irrigation systems. BIOFOULING 2020; 36:44-55. [PMID: 31985267 DOI: 10.1080/08927014.2020.1714600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The hydraulic characteristics along agricultural irrigation pipelines directly affect the local near-wall hydraulic shear stress and biofilm accumulation. However, the variations in the microbial community during the process remain unknown. Based on the Couette-Taylor reactor, a device was developed to accurately control the hydraulic shear stress. The results indicated that the near-wall hydraulic shear stresses showed quadratic correlations with microbial contents (represented by phospholipid fatty acids r > 0.77, p < 0.05), and the maximum values were obtained under the shear stresses of 0.20-0.35 Pa. For two types of treated wastewater, the mutual operational taxonomic units among different shear stress treatments showed good consistency (>185). Their corresponding response in the microbial community was represented by the quantitative correlations between the near-wall hydraulic shear stresses and the polymorphism indices (r > 0.82, p < 0.05). Among the microorganisms, Firmicutes at the phylum level were significantly affected by the shear stress and significantly influenced the biofilm accumulation process.
Collapse
Affiliation(s)
- Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
| | - Tianzhi Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
- Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
| | - Wenzhi Zeng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, P.R. China
| | - Tahir Muhammad
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|