1
|
Santos TM, Lopes MET, de Alencar ER, Silva MVDA, Machado SG. Ozonized water as a promising strategy to remove biofilm formed by Pseudomonas spp. on polyethylene and polystyrene surfaces. BIOFOULING 2025; 41:144-156. [PMID: 39846084 DOI: 10.1080/08927014.2024.2444387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
The dairy industry faces challenges in controlling spoilage microorganisms, particularly Pseudomonas, known to form resilient biofilms. Conventional disinfection methods have limitations, prompting the exploration of eco-friendly alternatives like ozone. This study focused on Pseudomonas biofilms on polystyrene and polyethylene surfaces, evaluating ozone efficacy when incorporated into different water sources and applied under static and dynamic conditions. Biofilm formation and removal were assessed with conventional microbiological and microscopic techniques. Despite variations in physicochemical properties, ozonized water from different sources showed similar effectiveness in removing Pseudomonas biofilms. Dynamic ozone application was more efficient, achieving a 2.35 log CFU/coupon reduction on polyethylene surfaces, compared to a 1.05 log CFU/coupon reduction under static conditions. These findings highlight the potential of ozonized water for removing Pseudomonas biofilms, especially under dynamic application. This eco-friendly approach could serve as an effective strategy to mitigate biofilm-related challenges in the dairy industry.
Collapse
|
2
|
Hamid Z, Meyrick BK, Macleod J, Heath EA, Blaxland J. The application of ozone within the food industry, mode of action, current and future applications, and regulatory compliance. Lett Appl Microbiol 2024; 77:ovae101. [PMID: 39462123 DOI: 10.1093/lambio/ovae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The food industry faces numerous challenges today, with the prevention and reduction of microbial contamination being a critical focus. While traditional chemical-based methods are effective and widely used, rising energy costs, the development of microbial tolerances, and growing awareness of the ecological impact of chemical biocides have renewed interest in novel biocides. Ozone, in both its gaseous and aqueous forms, is recognized as a potent disinfectant against bacteria, viruses, and fungi due to its high oxidation potential. Our review highlights several studies on the applications of ozone within the food industry, including its use for surface and aerosol disinfection and its capacity to reduce viable Listeria monocytogenes, a pertinent foodborne pathogen harbouring environmental and biocide stress tolerances and biofilm former. We also explore the use of ozone in food treatment and preservation, specifically on blueberries, apples, carrots, cabbage, and cherry tomatoes. While ozone is an effective disinfectant, it is important to consider material incompatibility, and the risks associated with prolonged human exposure to high concentrations. Nevertheless, for certain applications, ozone proves to be an efficacious and valuable alternative or complementary method for microbial control. Compliance with the biocide products regulation will require ozone device manufacturers to produce proven efficacy and safety data in line with British standards based on European standards (BS EN), and researchers to propose adaptations to account for ozone's unique properties.
Collapse
Affiliation(s)
- Zak Hamid
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Ben K Meyrick
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Joshua Macleod
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Emily A Heath
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - James Blaxland
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| |
Collapse
|
3
|
Nogueira Leite N, Garcia Sperandio V, da Piedade Edmundo Sitoe E, de Assis Silva MV, Rodrigues de Alencar E, Gonçalves Machado S. Ozone as a promising method for controlling Pseudomonas spp. biofilm in the food industry: a systematic review. BIOFOULING 2024; 40:660-678. [PMID: 39494760 DOI: 10.1080/08927014.2024.2420002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to evaluate the effectiveness of ozonation in controlling Pseudomonas spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling Pseudomonas spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.
Collapse
|
4
|
Mahdavi P, Aliakbarlu J. Antibiofilm Effect of Sequential Application of Ozonated Water, Acetic Acid and Lactic Acid on Salmonella Typhimurium and Staphylococcus aureus Biofilms In Vitro. J Food Prot 2024; 87:100336. [PMID: 39074613 DOI: 10.1016/j.jfp.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Biofilms are highly resistant to disinfectants and antimicrobials and are known as the primary source of food contamination. Salmonella Typhimurium (S. Typhimurium) and Staphylococcus aureus (S. aureus) have an excellent ability to form biofilm. This study aimed to evaluate the antibiofilm activity of ozonated water (O), acetic acid (AA), and lactic acid (LA), individually and sequentially, against biofilms of S. Typhimurium and S. aureus formed on the polystyrene surfaces. The antibiofilm effects of the treatments were evaluated using crystal violet staining and the viable count determination methods. In the staining method, the highest percentage of biofilm mass reduction was induced by successive use of ozonated water and acetic acid (O-AA), which reduced S. aureus biofilm mass by 44.36%. The sequential use of ozonated water and lactic acid (O-LA) could decrease S. Typhimurium biofilm mass by 57.26%. According to the viable count method, the most effective treatment was the sequential use of ozonated water and lactic acid (O-LA), which reduced S. aureus and S. Typhimurium biofilms by 1.76 and 4.06 log, respectively. It was concluded that the sequential use of ozonated water and organic acids can be considered a practical and environmentally friendly approach to control biofilms.
Collapse
Affiliation(s)
- Parvin Mahdavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran.
| |
Collapse
|
5
|
Botondi R, Lembo M, Carboni C, Eramo V. The Use of Ozone Technology: An Eco-Friendly Method for the Sanitization of the Dairy Supply Chain. Foods 2023; 12:foods12050987. [PMID: 36900504 PMCID: PMC10001170 DOI: 10.3390/foods12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The dairy field has considerable economic relevance in the agri-food system, but also has the need to develop new 'green' supply chain actions to ensure that sustainable products are in line with consumer requirements. In recent years, the dairy farming industry has generally improved in terms of equipment and product performance, but innovation must be linked to traditional product specifications. During cheese ripening, the storage areas and the direct contact of the cheese with the wood must be carefully managed because the proliferation of contaminating microorganisms, parasites, and insects increases significantly and product quality quickly declines, notably from a sensory level. The use of ozone (as gas or as ozonated water) can be effective for sanitizing air, water, and surfaces in contact with food, and its use can also be extended to the treatment of waste and process water. Ozone is easily generated and is eco-sustainable as it tends to disappear in a short time, leaving no residues of ozone. However, its oxidation potential can lead to the peroxidation of cheese polyunsaturated fatty acids. In this review we intend to investigate the use of ozone in the dairy sector, selecting the studies that have been most relevant over the last years.
Collapse
Affiliation(s)
- Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
- Correspondence:
| | - Micaela Lembo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | - Vanessa Eramo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
6
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
7
|
Matsena MT, Mabuse M, Tichapondwa SM, Chirwa EMN. Improved performance and cost efficiency by surface area optimization of granular activated carbon in air-cathode microbial fuel cell. CHEMOSPHERE 2021; 281:130941. [PMID: 34289611 DOI: 10.1016/j.chemosphere.2021.130941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) architectural modification is increasingly becoming an important area of research due to the need to improve energy recovery. This study presents a low-cost modification method of the anode that does not require pre-treatment-step involving hazardous chemicals to improve performance. The modification step involves deposition of granular activated carbon (GAC) which is highly conductive and provides a high specific surface area inside a carbon cloth that acts as an anode and as a supporting material. The GAC particle size of 0.6-1.1 mm resulted in an increase in air-cathode MFC performance due to an increase in available surface area of 879.5 m2 g-1 for attachment of cells based on Brunauer, Emmett, and Teller (BET) results, and an increase in the appropriate surface for attachment of cells which was rough based on the scanning electron microscope (SEM) results. On the other hand, although GAC with size of particles of 0.45-0.6 mm had the highest available surface area for attachment of cells, it lacked the appropriate surface for attachment of cells and reduced MFC performance. This means that particle size optimization of GAC is essential since there is a limit to which the particle diameter can be reduced. The utilization of the GAC with the optimized particle size produced an output voltage of 507.5 mV and maximum power output of 1287.7 mW m-3 at current output of 2537.5 mA m-3. This study also showed that there is an economic benefit in modifying carbon cloth using GAC with optimized particle size.
Collapse
Affiliation(s)
- Mpumelelo T Matsena
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| | - Mziwenene Mabuse
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Shepherd M Tichapondwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
8
|
Performance of a Combined Treatment Approach on the Elimination of Microbes from Poultry Slaughterhouse Wastewater. SUSTAINABILITY 2021. [DOI: 10.3390/su13063467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The efficiency of microbial inactivation in water is highly dependent on the type of treatment technology used as well as the characteristics of the water to be treated. Wastewater from poultry slaughterhouses carries a significant number of microorganisms posing threats to humans and the environment in general. Therefore, the treatment of poultry slaughterhouse wastewater requires the use of appropriate purification systems with high removal efficiency for microbial agents. In this study, the performance of an integrated treatment plant with electrolysis, ultrafiltration, and ultraviolet radiation as the principal treatment units was investigated in terms of microbial inactivation from poultry slaughterhouse wastewater. In this case, total microbial number, total coliform bacteria, thermo-tolerant coliform bacteria, pathogenic flora, including salmonella coliphages, spores of sulfite-reducing clostridia, Pseudomonas aeruginosa, and Staphylococcus aureus and Enterococcus were studied. Approximately 63.95% to 99.83% of the microbes were removed by the electrochemical treatment unit as well as a 99.86% to 100% removal efficiency was achieved after the combined treatment. However, Pseudomonas aeruginosa was the only microbial agent detected in the final effluent after the combined treatment. The phenomenon suggests that an upgrade to the treatment plant may be required to achieve 100% removal assurance for Pseudomonas aeruginosa.
Collapse
|
9
|
Matsena MT, Tichapondwa SM, Chirwa EM. Improved chromium (VI) reduction performance by bacteria in a biogenic palladium nanoparticle enhanced microbial fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|