1
|
Ratajczak K, Juzwa W, Piotrowska-Cyplik A. Optimization of the flow cytometry method of detection, quantification and qualification of microorganisms in carrot juice. Food Chem 2024; 460:140606. [PMID: 39089032 DOI: 10.1016/j.foodchem.2024.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Fresh, unpasteurized carrot juice is a popular element of the everyday diet of many consumers, and as such the matter of the juice's microbial safety remains an important one. Imaging flow cytometry (FCM) allows a fast enumeration and determination of cells, as well as their further differentiation. However, carrot juice is a difficult food product to analyze with the use of FCM due to interference from autofluorescence and the presence of plant debris. In this research, we aimed to obtain an effective and repeatable protocol for the preparation of carrot juice samples for FCM analysis. Through experimental and software-based means we successfully determined a reliable protocol for the preparation of fresh, unpasteurized carrot juice, which consisted of a sequence of filtering, centrifugation, enzyme treatment, and finally the implementation of the Machine Learning protocol for the best result.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland.
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
2
|
Kiepś J, Juzwa W, Dembczyński R. Imaging Flow Cytometry Demonstrates Physiological and Morphological Diversity within Treated Probiotic Bacteria Groups. Int J Mol Sci 2023; 24:ijms24076841. [PMID: 37047813 PMCID: PMC10095186 DOI: 10.3390/ijms24076841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Probiotic bacteria can be introduced to stresses during the culturing phase as an alternative to the use of protectants and coating substances during drying. Accurate enumeration of the bacterial count in a probiotic formulation can be provided using imaging flow cytometry (IFC). IFC overcomes the weak points of conventional, commonly used flow cytometry by combining its statistical power with the imaging content of microscopy in one system. Traditional flow cytometers only collect the fluorescence signal intensities, while IFC provides many more steps as it correlates the data on the measured parameters of fluorescence light with digitally processed images of the analyzed cells. As an alternative to standard methods (plate cell counts and traditional flow cytometry) IFC provides additional insight into the physiology and morphology of the cell. The use of complementary dyes (RedoxSensorTM Green and propidium iodide) allows for the designation of groups based on their metabolic activity and membrane damage. Additionally, cell sorting is incorporated to assess each group in terms of growth on different media (MRS-Agar and MRS broth). Results show that the groups with intermediate metabolic activity and some degree of cellular damage correspond with the description of viable but nonculturable cells.
Collapse
Affiliation(s)
- Jakub Kiepś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Radosław Dembczyński
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
3
|
Imaging Flow Cytometry to Study Biofilm-Associated Microbial Aggregates. Molecules 2021; 26:molecules26237096. [PMID: 34885675 PMCID: PMC8659131 DOI: 10.3390/molecules26237096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of the research was to design an advanced analytical tool for the precise characterization of microbial aggregates from biofilms formed on food-processing surfaces. The approach combined imaging flow cytometry with a machine learning-based interpretation protocol. Biofilm samples were collected from three diagnostic points of the food-processing lines at two independent time points. The samples were investigated for the complexity of microbial aggregates and cellular metabolic activity. Thus, aggregates and singlets of biofilm-associated microbes were simultaneously examined for the percentages of active, mid-active, and nonactive (dead) cells to evaluate the physiology of the microbial cells forming the biofilm structures. The tested diagnostic points demonstrated significant differences in the complexity of microbial aggregates. The significant percentages of the bacterial aggregates were associated with the dominance of active microbial cells, e.g., 75.3% revealed for a mushroom crate. This confirmed the protective role of cellular aggregates for the survival of active microbial cells. Moreover, the approach enabled discriminating small and large aggregates of microbial cells. The developed tool provided more detailed characteristics of bacterial aggregates within a biofilm structure combined with high-throughput screening potential. The designed methodology showed the prospect of facilitating the detection of invasive biofilm forms in the food industry environment.
Collapse
|
4
|
Wojtasik B, Zbawicka M, Grabarczyk L, Juzwa W. Flow cytometric approach to evaluate the impact of hydro-technical concrete compounds' release to the freshwater microbiome. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:698. [PMID: 34618240 PMCID: PMC8497448 DOI: 10.1007/s10661-021-09481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The aim of this research was to test the potential of applying a flow cytometric procedure to evaluate the impact of concrete compounds' release to the freshwater microbiome. Cells from the collected samples were stained with a fluorogenic redox indicator dye that measures the redox potential of microbial cells. This novel approach was combined with the assessment of microorganisms' penetration into the internal structures of concrete using the Rose Bengal sodium salt staining. Rose Bengal staining revealed an intense fouling of the upper and side walls of the concrete cubes and also indicated the penetration of microorganisms inside the concrete as observed for the cubes' cross-sections. Flow cytometric cellular redox potential measurement revealed high percentages of active cells within the concrete's porous structures and in non-exposed water (32.7% and 30.2% of active cells) versus samples from exposed water and concrete's outer surfaces (6.8%, 6.1%, and 3.3% of active cells). The results demonstrated a detrimental impact of hydro-technical concrete on the vitality of microbial cells within the freshwater environment. Tested protocol by analyzing the physiology of microbial cells improved the functional description of complex communities to evaluate the fate of contaminants present in the concrete-based hydro-technical infrastructure.
Collapse
Affiliation(s)
- Barbara Wojtasik
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lucyna Grabarczyk
- Department of Mechanics of Materials and Structures, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 28, 60-627 Poznan, Poland
| |
Collapse
|
5
|
Sielatycka K, Juzwa W, Śliwa-Dominiak J, Kaczmarczyk M, Łoniewski I, Marlicz W. Multiparameter flow cytometric enumeration of probiotic-containing commercial powders. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Niedźwiedź I, Juzwa W, Skrzypiec K, Skrzypek T, Waśko A, Kwiatkowski M, Pawłat J, Polak-Berecka M. Morphological and physiological changes in Lentilactobacillus hilgardii cells after cold plasma treatment. Sci Rep 2020; 10:18882. [PMID: 33144617 PMCID: PMC7609761 DOI: 10.1038/s41598-020-76053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
Atmospheric cold plasma (ACP) inactivation of Lentilactobacillus hilgardii was investigated. Bacteria were exposed to ACP dielectric barrier discharge with helium and oxygen as working gases for 5, 10, and 15 min. The innovative approach in our work for evaluation of bacterial survival was the use in addition to the classical plate culture method also flow cytometry which allowed the cells to be sorted and revealed different physiological states after the plasma treatment. Results showed total inhibition of bacterial growth after 10-min of ACP exposure. However, the analysis of flow cytometry demonstrated the presence of 14.4% of active cells 77.5% of cells in the mid-active state and 8.1% of dead cells after 10 min. In addition, some of the cells in the mid-active state showed the ability to grow again on culture medium, thus confirming the hypothesis of induction of VBNC state in L .hilgardii cells by cold plasma. In turn, atomic force microscopy (AFM) which was used to study morphological changes in L. hilgardii after plasma treatment at particular physiological states (active, mid-active, dead), showed that the surface roughness of the mid-active cell (2.70 ± 0.75 nm) was similar to that of the control sample (2.04 ± 0.55 nm). The lack of considerable changes on the cell surface additionally explains the effective cell resuscitation. To the best of our knowledge, AFM was used for the first time in this work to analyze cells which have been sorted into subpopulations after cold plasma treatment and this is the first work indicating the induction of VBNC state in L. hilgardii cells after exposure to cold plasma.
Collapse
Affiliation(s)
- Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Maria Curie-Skłodowska University, M. Curie-Skłodowska Square 3/22, 20-031, Lublin, Poland
| | - Tomasz Skrzypek
- Laboratory of Confocal and Electron Microscopy, Interdisciplinary Research Center, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Michał Kwiatkowski
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Joanna Pawłat
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| |
Collapse
|
7
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|