1
|
Krishnan D, Aruna Senthil Kumar S, Jothipandiyan S, Yamuna Devi V, Suresh D, Nithyanand P. Exploring quinazoline-derived copper(I) complex coated intravaginal ring against vulvovaginal candidiasis causing Candida species. BIOFOULING 2025:1-16. [PMID: 40265509 DOI: 10.1080/08927014.2025.2489479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025]
Abstract
Vulvovaginal candidiasis (VVC) is especially prevalent among intrauterine device (IUD) and intravaginal ring (IVR) users. Candida albicans is the leading causative agent of VVC followed by Candida glabrata. Ascribed to the increased drug resistance by Candida spp. to the currently available drugs, this study has focused on the novel quinazoline-derived copper(I) complexes as anti-candida agents. As a novel approach, a vaginal ring was coated with the best quinazoline-derived copper(I) complex, and biofilm disruption ability was evaluated. The coated vaginal ring eradicated 70% of preformed biofilms and also inhibited the hyphal transition of Candida albicans in a simulated vaginal fluid (SVF). The overall study validates the anti-biofilm and anti-virulent properties of the metal complex-coated vaginal ring using various microscopic studies.
Collapse
Affiliation(s)
- Dhesiga Krishnan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Venkatesan Yamuna Devi
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Devarajan Suresh
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
2
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies. Appl Microbiol Biotechnol 2024; 108:3. [PMID: 38159120 DOI: 10.1007/s00253-023-12975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf 2024; 12:100133. [PMID: 39634722 PMCID: PMC11615143 DOI: 10.1016/j.tcsw.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated infections. This includes the development of effective delivery systems and the identification of suitable targets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional antibiotic treatment for biofilm-associated infections and warrants further investigation.
Collapse
Affiliation(s)
- Arindam Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Gayatri M, Jothipandiyan S, Azeez MKA, Sudharsan M, Suresh D, Nithyanand P. Novel thiazolinyl-picolinamide-based palladium(II) complex extenuates the virulence and biofilms of vulvovaginal candidiasis (VVC) causing Candida. Int Microbiol 2024; 27:1527-1539. [PMID: 38467906 DOI: 10.1007/s10123-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Candida infections are growing all over the world as a result of their resistance to anti-fungal drugs. This raises concerns about public health, particularly in cases of vulvovaginal candidiasis (VVC). Therefore, the need for effective treatment options for Candida infections has become crucial. The main goal of the study is to evaluate the efficacy of novel palladium metal complexes against fluconazole-resistant Candida spp., particularly C. albicans and C. auris. The process begins with identifying the minimum inhibitory concentration (MIC), followed by growth curve assays, colony morphology analysis, characterization, and gene expression analysis. The investigation revealed that sub-MIC of Pd(II) complex B (250 μg/mL) inhibited Candida spp. more effectively than amphotericin B (500 μg/mL). Further, Pd(II) complex B drastically reduced the growth of Candida spp. biofilms by 70-80% for nascent biofilms and 70-75% for mature biofilms. Additionally, the yeast-to-hyphal switch and SEM studies revealed that Pd(II) complex B effectively hinders the growth of drug-resistant Candida cells. The gene expression investigation also evidenced that Pd(II) complex B downregulated virulence genes in C. albicans (ERG, EFG, UME6, and HGC) and C. auris (ERG, CDR, and HGC). The findings showed that Pd(II) complex B effectively inhibited the growth of Candida biofilm formation and was reported as a potential anti-biofilm agent against Candida spp. that are resistant to drugs.
Collapse
Affiliation(s)
- Munieswaran Gayatri
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Mohamed Khalid Abdul Azeez
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Murugesan Sudharsan
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Devarajan Suresh
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
5
|
Kumar SAS, Krishnan D, Jothipandiyan S, Durai R, Hari BNV, Nithyanand P. Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model. Antonie Van Leeuwenhoek 2024; 117:37. [PMID: 38367023 DOI: 10.1007/s10482-024-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/19/2024]
Abstract
Vulvovaginal candidiasis is the second most common vaginal infection caused by drug-resistant Candida species that affects about 70-75% of reproductive age group women across the globe. As current-day antifungal drugs are ineffective against the biofilms formed by the drug-resistant Candida strains, several natural compounds and antagonistic microbes are being explored as alternative antifungal agents. In the present study, we investigated the anti-biofilm activity of Cell-Free Supernatant (CFS) extracted from the commercially available probiotics VSL-3 against the biofilms of Candida species and also evaluated their efficacy in curbing the yeast-to-hyphal transition. Various methodologies like crystal violet staining and scanning electron microscopy were used to study the effect of CFS against the biofilms formed by the species. The ability of CFS to interfere with yeast to hyphal transition in Candida was studied by colony morphology assay and visually confirmed with phase contrast microscopy. The potential of the CFS of the probiotics was also evaluated using goat buccal tissue, a novel ex-vivo model that mimics the vaginal environment. Moreover, the supernatant extracted from VSL-3 had the ability to down-regulate the expression of virulence genes of Candida from the biofilm formed over the ex-vivo model. These results emphasize the anti-fungal and anti-infective properties of the CFS of VSL-3 against drug-resistant Candida strains causing vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhesiga Krishnan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Ramyadevi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
6
|
Krishnan S, Sivaraman S, Jothipandiyan S, Venkatachalam P, Ramiah Shanmugam S, Paramasivam N. Bioprospecting of aqueous phase from pyrolysis of plant waste residues to disrupt MRSA biofilms. BIOFOULING 2023; 39:231-243. [PMID: 37144617 DOI: 10.1080/08927014.2023.2207461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) infections have increased at an alarming rate, recently. In India, stubble burning and air pollution due to the burning of agricultural and forest residues have also increased over the past decade causing environmental and health hazards. This work evaluates the anti-biofilm property of the aqueous phase obtained from pyrolysis of wheat straw (WS AQ) and pine cone (PC AQ) against an MRSA isolate. The WS AQ and PC AQ compositions were determined by GC-MS analysis. The minimum inhibitory concentration was found to be 8% (v v-1) and 5% (v v-1) for WS AQ and PC AQ, respectively. The eradication of biofilms was performed on hospital contact surfaces namely, stainless steel and polypropylene and found to be 51% and 52% for WS AQ and PC AQ, respectively. Compounds identified from the aqueous phase of WS and PC docked against AgrA protein showed good binding scores.
Collapse
Affiliation(s)
- Srividhya Krishnan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Subramaniyasharma Sivaraman
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ponnusami Venkatachalam
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Saravanan Ramiah Shanmugam
- Biomass, Bioenergy and Bioproducts Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
7
|
Silva RTC, Guidotti-Takeuchi M, Peixoto JLM, Demarqui FM, Mori AP, Dumont CF, Ferreira GRA, Pereira GDM, Rossi DA, Corbi PP, Pavan FR, Rezende Júnior CDO, Melo RTD, Guerra W. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules 2023; 28:molecules28093887. [PMID: 37175297 PMCID: PMC10179749 DOI: 10.3390/molecules28093887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 μg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 μg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.
Collapse
Affiliation(s)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Jéssica Laura Miranda Peixoto
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Fernanda Manaia Demarqui
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | - Ananda Paula Mori
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| | - Carolyne Ferreira Dumont
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, State University of Campinas-UNICAMP, Campinas 13083-872, SP, Brazil
| | - Fernando Rogério Pavan
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | | | - Roberta Torres de Melo
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
8
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
9
|
Elshaer SL, Shaldam MA, Shaaban MI. Ketoprofen, Piroxicam and Indomethacin Suppressed Quorum Sensing and Virulence Factors in Acinetobacter baumannii. J Appl Microbiol 2022; 133:2182-2197. [PMID: 35503000 DOI: 10.1111/jam.15609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
Abstract
AIM Quorum sensing (QS) inhibition is a promising strategy to suppress bacterial virulence, and control infection caused by Gram-negative and Gram-positive bacteria. This study explores the quorum sensing inhibiting activity of the non-steroidal anti-inflammatory drugs (NSAIDs) in Acinetobacter baumannii. METHODS AND RESULTS Ketoprofen, piroxicam, and indomethacin revealed QS inhibition via elimination of violacein production of the reporter strain Chromobacterium violaceum ATCC 12472 without affecting bacterial growth. The minimal inhibitory concentration (MIC) of ketoprofen, piroxicam, and indomethacin was determined against A. baumannii strains ATCC 17978, ATCC 19606, A1, A11, and A27 by the microbroth dilution method. The MICs of ketoprofen against tested isolates were 3.12-6.25 mg mL-1 , piroxicam MICs were 1.25-2.5 mg mL-1 , and indomethacin MICs were 3.12-12.5 mg mL-1 . Those compounds significantly inhibited QS-associated virulence factors such as biofilm formation, and surface motility, as well as, significantly increased bacterial tolerance to oxidative stress without affecting bacterial growth. On the molecular level, the three compounds significantly inhibited the transcription of QS regulatory genes abaI/abaR, and biofilm regulated genes cusD, and pgaB. Molecular docking analysis revealed potent binding affinity of the three compounds with AbaI via hydrogen and/or hydrophobic bonds. CONCLUSION These results indicate that NSAIDs, ketoprofen, piroxicam, and indomethacin, could be potential inhibitors of the QS and could suppress the QS-related virulence factors of A. baumannii. SIGNIFICANCE AND IMPACT Ketoprofen, piroxicam, and indomethacin could provide promising implications and strategies for combating the virulence, and pathogenesis of A. baumannii.
Collapse
Affiliation(s)
- Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| |
Collapse
|