1
|
Otoh EF, Odey MO, Martin OI, Agurokpon DC. In silico engineering of graphitic carbon nitride nanostructures through germanium mono-doping and codoping with transition metals (Ni, Pd, Pt) as sensors for diazinon organophosphorus pesticide pollutants. BMC Chem 2025; 19:78. [PMID: 40121507 PMCID: PMC11929304 DOI: 10.1186/s13065-025-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
The extensive use of pesticides has raised concerns about environmental contamination, which poses potential health risks to humans and aquatic life. Hence, the need for a healthy and friendly ecosystem initiated this study, which was modeled through profound density functional theory (DFT) at the B3LYP-D3(BJ)/def2svp level of theory to gain insights into the electronic characteristics of germanium-doped graphitic carbon nitride (Ge@C3N4) engineered with nickel group transition metals (Ni, Pt, and Pd) as sensors for diazinon (DZN), an organophosphorus pesticide pollutant. To effectively sense diazinon, this research employed a variety of methodologies, beginning with the analysis of electronic properties, intermolecular investigations, adsorption studies, and sensor mechanisms. These detailed assessments revealed insightful results, as clearly indicated by their narrow energy gap and other electronic properties. Noncovalent interactions characterized by van der Waals forces were revealed predominantly by quantum atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Furthermore, the results of the adsorption studies, which measured the strength of the interaction between the pesticide molecules and the nanostructures, revealed favorable results characterized by negative adsorption energies of - 1.613, - 1.613, and - 1.599 eV for DZN_Ge@C3N4, DZN_Ni_Ge@C3N4, and DZN_Pd_Ge@C3N4, respectively. The simulated mechanism through which diazinon is sensed revealed favorable results, as observed by the negative Fermi energy and fraction of electron transfer (∆N), as well as a high dipole moment. This study also revealed that the codoping influenced the behavior of the systems, revealing that DZN_Ni_Ge@C3N4 was the best sensing system because of its strongest adsorption (- 1.613 eV), highest dipole moment (8.348 D), most negative Fermi energy (- 1.300 eV), lowest work function (1.300 eV), and good ∆N (- 1.558) values. This study, therefore, proposes these nanostructures for further in vitro studies seeking to sense diazinon and other pesticides to maintain healthy ecosystems.
Collapse
Affiliation(s)
- Ene F Otoh
- Department of Biochemistry, Federal University Wukari, Wukari, Nigeria
| | - Michael O Odey
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Osinde I Martin
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C Agurokpon
- Department of Microbiology, Cross River University of Technology, Calabar, Nigeria.
| |
Collapse
|
2
|
Ciprofloxacin/Topoisomerase-II complex as a promising dual UV–Vis/fluorescent probe: accomplishments and opportunities for the cancer diagnosis. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Recent advances in computational methods for biosensor design. Biotechnol Bioeng 2020; 118:555-578. [PMID: 33135778 DOI: 10.1002/bit.27618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023]
Abstract
Biosensors are analytical tools with a great application in healthcare, food quality control, and environmental monitoring. They are of considerable interest to be designed by using cost-effective and efficient approaches. Designing biosensors with improved functionality or application in new target detection has been converted to a fast-growing field of biomedicine and biotechnology branches. Experimental efforts have led to valuable successes in the field of biosensor design; however, some deficiencies restrict their utilization for this purpose. Computational design of biosensors is introduced as a promising key to eliminate the gap. A set of reliable structure prediction of the biosensor segments, their stability, and accurate descriptors of molecular interactions are required to computationally design biosensors. In this review, we provide a comprehensive insight into the progress of computational methods to guide the design and development of biosensors, including molecular dynamics simulation, quantum mechanics calculations, molecular docking, virtual screening, and a combination of them as the hybrid methodologies. By relying on the recent advances in the computational methods, an opportunity emerged for them to be complementary or an alternative to the experimental methods in the field of biosensor design.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
4
|
Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020; 104:9877-9890. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.,School of Public Health, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Cuimei Chen
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
5
|
Li J, Song Y, Li F, Zhang H, Liu W. FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm. Comput Biol Chem 2020; 88:107363. [DOI: 10.1016/j.compbiolchem.2020.107363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
|
6
|
Kaur J, Singh PK. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Phys Chem Chem Phys 2020; 22:15105-15119. [DOI: 10.1039/d0cp01647k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A systematic review of enzyme based optical detection schemes for the detection and analysis of organophosphate pesticides has been presented.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
7
|
Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019; 24:E4410. [PMID: 31816853 PMCID: PMC6930470 DOI: 10.3390/molecules24234410] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
Collapse
Affiliation(s)
- Jéssika P. Teixeira
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Alexandre A. de Castro
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Flávia V. Soares
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Minas Gerais, Brazil; (J.P.T.); (A.A.d.C.); (F.V.S.); (E.F.F.d.C.)
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|