1
|
Liu J, Gao J, Wang H, Fan X, Li L, Wang X, Wang X, Lu J, Shi X, Yang P. Acute Neurobehavioral and Glial Responses to Explosion Gas Inhalation in Rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:5099-5111. [PMID: 39092980 DOI: 10.1002/tox.24389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Military personnel, firefighters, and fire survivors exhibit a higher prevalence of mental health conditions such as depression and post-traumatic stress disorder (PTSD) compared to the general population. While numerous studies have examined the neurological impacts of physical trauma and psychological stress, research on acute neurobehavioral effects of gas inhalation from explosions or fires is limited. This study investigates the early-stage neurobehavioral and neuronal consequences of acute explosion gas inhalation in Sprague-Dawley rats. Rats were exposed to simulated explosive gas and subsequently assessed using behavioral tests and neurobiological analyses. The high-dose exposure group demonstrated significant depression-like behaviors, including reduced mobility and exploration. However, neuronal damage was not evident in histological analyses. Immunofluorescence revealed increased density of radial glia and oligodendrocytes in specific brain regions, suggesting hypoxia and axon damage induced by gas inhalation as a potential mechanism for the observed neurobehavioral changes. These findings underscore the acute impact of explosion gas inhalation on mental health, highlighting the habenula and dentate gyrus of hippocampus as the possible target regions. The findings are expected to support early diagnosis and treatment strategies for brain injuries caused by explosion gas, offering insights into early intervention for depression and PTSD in affected populations.
Collapse
Affiliation(s)
- Jinren Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiangni Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiying Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Lu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xingmin Shi
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Pinglin Yang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
3
|
Li H, Li D, Zhao G, Gao Y, Ke J. Effects of Danggui-Shaoyao-San on depression- and anxiety-like behaviors of rats induced by experimental tooth movement. J Orofac Orthop 2021; 83:23-33. [PMID: 34309701 DOI: 10.1007/s00056-021-00323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the effects of Danggui-Shaoyao-San (DSS) on depression- and anxiety-like behavior induced by experimental tooth movement (ETM) in rats. MATERIALS AND METHODS Thirty-six rats were randomly divided into a sham group (n = 12; rats underwent all operation procedures, except placement of orthodontic forces, and received saline treatment), ETM group (n = 12; rats received saline treatment and ETM), and DETM group (n = 12; rats received DSS [dose: 150 mg/kg twice daily from preoperative day 5 to postoperative day 7] treatment and ETM). The vacuous chewing movement (VCM) test, open-field test, and elevated plus maze test were performed to assess the depression- and anxiety-like behaviors of the rats. RESULTS DSS pretreatment significantly decreased the ETM-induced VCM time (P < 0.05, DETM vs. ETM), increased the ETM-induced time to the central area of experimental device during the 5 min open-field test (P < 0.05, DETM vs. ETM), and increased the ratio of time spent in the open arms of the 5 min elevated plus maze test induced by ETM (P < 0.01, DETM vs. ETM). CONCLUSIONS DSS pretreatment can restore the impaired abilities of rats caused by ETM-induced depression- and anxiety-like behavior.
Collapse
Affiliation(s)
- Hongshi Li
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Dongxia Li
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Guizhi Zhao
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Yuan Gao
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Jie Ke
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China.
| |
Collapse
|
4
|
Gorgun MF, Zhuo M, Dineley KT, Englander EW. Elevated Neuroglobin Lessens Neuroinflammation and Alleviates Neurobehavioral Deficits Induced by Acute Inhalation of Combustion Smoke in the Mouse. Neurochem Res 2019; 44:2170-2181. [PMID: 31420834 DOI: 10.1007/s11064-019-02856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Acute inhalation of combustion smoke produces long-term neurologic deficits in survivors. To study the mechanisms that contribute to the development of neurologic deficits and identify targets for prevention, we developed a mouse model of acute inhalation of combustion smoke, which supports longitudinal investigation of mechanisms that underlie the smoke induced inimical sequelae in the brain. Using a transgenic mouse engineered to overexpress neuroglobin, a neuroprotective oxygen-binding globin protein, we previously demonstrated that elevated neuroglobin preserves mitochondrial respiration and attenuates formation of oxidative DNA damage in the mouse brain after smoke exposure. In the current study, we show that elevated neuronal neuroglobin attenuates the persistent inflammatory changes induced by smoke exposure in the mouse brain and mitigates concordant smoke-induced long-term neurobehavioral deficits. Specifically, we found that increases in hippocampal density of GFAP and Iba-1 positive cells that are detected post-smoke in wild-type mice are absent in the neuroglobin overexpressing transgenic (Ngb-tg) mice. Similarly, the smoke induced hippocampal myelin depletion is not observed in the Ngb-tg mice. Importantly, elevated neuroglobin alleviates behavioral and memory deficits that develop after acute smoke inhalation in the wild-type mice. Taken together, our findings suggest that the protective effects exerted by neuroglobin in the brains of smoke exposed mice afford protection from long-term neurologic sequelae of acute inhalation of combustion smoke. Our transgenic mouse provides a tool for assessing the potential of elevated neuroglobin as possible strategy for management of smoke inhalation injury.
Collapse
Affiliation(s)
- Murat F Gorgun
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Ming Zhuo
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Ella W Englander
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
- Shriners Hospitals for Children, Galveston, TX, USA.
| |
Collapse
|