1
|
Houghton FM, Adams SE, Ríos AS, Masino L, Purkiss AG, Briggs DC, Ledda F, McDonald NQ. Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly. Nat Commun 2023; 14:7551. [PMID: 37985758 PMCID: PMC10661694 DOI: 10.1038/s41467-023-43148-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Glial-cell line derived neurotrophic factor (GDNF) bound to its co-receptor GFRα1 stimulates the RET receptor tyrosine kinase, promoting neuronal survival and neuroprotection. The GDNF-GFRα1 complex also supports synaptic cell adhesion independently of RET. Here, we describe the structure of a decameric GDNF-GFRα1 assembly determined by crystallography and electron microscopy, revealing two GFRα1 pentamers bridged by five GDNF dimers. We reconsitituted the assembly between adhering liposomes and used cryo-electron tomography to visualize how the complex fulfils its membrane adhesion function. The GFRα1:GFRα1 pentameric interface was further validated both in vitro by native PAGE and in cellulo by cell-clustering and dendritic spine assays. Finally, we provide biochemical and cell-based evidence that RET and heparan sulfate cooperate to prevent assembly of the adhesion complex by competing for the adhesion interface. Our results provide a mechanistic framework to understand GDNF-driven cell adhesion, its relationship to trophic signalling, and the central role played by GFRα1.
Collapse
Affiliation(s)
- F M Houghton
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - S E Adams
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Vertex Pharmaceuticals, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4RW, UK
| | - A S Ríos
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - L Masino
- Structural Biology Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - A G Purkiss
- Structural Biology Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - D C Briggs
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - F Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - N Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
2
|
Adachi H, Morizane A, Torikoshi S, Raudzus F, Taniguchi Y, Miyamoto S, Sekiguchi K, Takahashi J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:767-777. [PMID: 35605097 PMCID: PMC9299512 DOI: 10.1093/stcltm/szac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiromasa Adachi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Corresponding authors: Asuka Morizane, MD, PhD, Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650 0046, Japan, Tel: +81 78 302 4321; Fax: +81 78 302 7537;
| | - Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Neuronal Signaling and Regeneration Unit, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Medical Education Center/International Education Section, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Susumu Miyamoto
- Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Kiyotoshi Sekiguchi, PhD (for chimeric laminin fragments), Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 6 6105 5935; Fax: +81 6 6105 5935; Email;
| | - Jun Takahashi
- Jun Takahashi, MD, PhD, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81 75 366 7052; Fax: +81 75 366 7071;
| |
Collapse
|
3
|
Rutledge EA, McMahon AP. Mutational analysis of genes with ureteric progenitor cell-specific expression in branching morphogenesis of the mouse kidney. Dev Dyn 2020; 249:765-774. [PMID: 32017326 DOI: 10.1002/dvdy.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ureteric progenitor cells (UPCs) within the branch tips of the arborizing ureteric epithelium of the kidney's developing collecting system establish the shape and cellular organization of the collecting network, and drive the nephrogenic program through their interactions with nephron progenitor cells. In a previous study, expression screening identified a cohort of genes showing UPC-enriched expression including D17H6S56E-5, Hs3st3a1, Hs3st3b1, and Tmem59l. Each of these is also enriched in branch tips of assembling airways of the developing lungs. Here, we used Crispr-CAS9 directed gene editing to mutate each of these targets to address their potential role(s) in UPC programs. RESULTS Single (D17H6S56E-5 and Tmem59l) and double (Hs3st3a1 and Hs3st3b1) mutants were viable, fertile, and displayed varying frequencies of ureter duplications and no overt lung phenotype. Ureter duplications arise spontaneously through multiple outgrowths of the ureteric bud at the onset of kidney development. Tmem59l mutants and Hs3st3a1/Hs3st3b1 compound mutants showed a weakly penetrant, but statistically significant increase in duplicated ureters compared to C57BL6/J and SW wild-type mouse strains. CONCLUSIONS Tmem59l and Hs3st3a1/Hs3st3b1 activities contribute to the regulatory programs restricting ureteric outgrowth in the developing mouse kidney. However, the low penetrance of the observed phenotype precludes a detailed analysis of their specific actions.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
4
|
Cai S, Lukamto DH, Toh JKC, Huber RG, Bond PJ, Jee JE, Lim TC, Liu P, Chen L, Qu QV, Lee SS, Lee SG. Directing GDNF-mediated neuronal signaling with proactively programmable cell-surface saccharide-free glycosaminoglycan mimetics. Chem Commun (Camb) 2019; 55:1259-1262. [PMID: 30632548 DOI: 10.1039/c8cc09253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A significant barrier to harnessing the power of cell-surface glycosaminoglycans (GAGs) to modulate glial cell-line-derived neurotrophic factor (GDNF) signaling is the difficulty in accessing key GAG structures involved. Here, we report tailored GDNF signaling using synthetic polyproline-based GAG mimetics (PGMs). PGMs deliver the much needed proactive programmability for GDNF recognition and effectively modulate GDNF-mediated neuronal processes in a cellular context.
Collapse
Affiliation(s)
- Shuting Cai
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D, Goldstein AM. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145:dev.160317. [PMID: 29678817 DOI: 10.1242/dev.160317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Sandmark J, Dahl G, Öster L, Xu B, Johansson P, Akerud T, Aagaard A, Davidsson P, Bigalke JM, Winzell MS, Rainey GJ, Roth RG. Structure and biophysical characterization of the human full-length neurturin-GFRa2 complex: A role for heparan sulfate in signaling. J Biol Chem 2018; 293:5492-5508. [PMID: 29414779 DOI: 10.1074/jbc.ra117.000820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2. This is the first crystal structure of a GFRa with all three domains and shows that domain 1 does not interact directly with NRTN, but it may support an interaction with RET and/or NCAM, via a highly conserved surface. In addition, biophysical results show that the relative concentration of GFRa2 on cell surfaces can affect the functional affinity of NRTN through avidity effects. We have identified a heparan sulfate-binding site on NRTN and a putative binding site in GFRa2, suggesting that heparan sulfate has a role in the assembly of the signaling complex. We further show that mutant NRTN with reduced affinity for heparan sulfate may provide a route forward for delivery of NRTN with increased exposure in preclinical in vivo models and ultimately to Parkinson's patients.
Collapse
Affiliation(s)
- Jenny Sandmark
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Göran Dahl
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Linda Öster
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Bingze Xu
- the Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.,Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Sweden
| | - Patrik Johansson
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Tomas Akerud
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Anna Aagaard
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Pia Davidsson
- Bioscience, Cardiovascular and Metabolic Diseases, and
| | - Janna M Bigalke
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | | | - G Jonah Rainey
- the Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland 20878, and
| | - Robert G Roth
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Sweden,
| |
Collapse
|
7
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
8
|
Rahmani S, Ross AM, Park TH, Durmaz H, Dishman AF, Prieskorn DM, Jones N, Altschuler RA, Lahann J. Dual Release Carriers for Cochlear Delivery. Adv Healthc Mater 2016; 5:94-100. [PMID: 26178272 PMCID: PMC5550902 DOI: 10.1002/adhm.201500141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/03/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sahar Rahmani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Astin M Ross
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tae-Hong Park
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hakan Durmaz
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Acacia F Dishman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan Jones
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Altschuler
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
10
|
Gallagher J. Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96:203-31. [PMID: 26173450 PMCID: PMC4561558 DOI: 10.1111/iep.12135] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Heparan sulphate (HS) sits at the interface of the cell and the extracellular matrix. It is a member of the glycosaminoglycan family of anionic polysaccharides with unique structural features designed for protein interaction and regulation. Its client proteins include soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and various types of collagen. The protein-binding properties of HS, together with its strategic positioning in the pericellular domain, are indicative of key roles in mediating the flow of regulatory signals between cells and their microenvironment. The control of transmembrane signalling is a fundamental element in the complex biology of HS. It seems likely that, in some way, HS orchestrates diverse signalling pathways to facilitate information processing inside the cell. A dictionary definition of an orchestra is 'a large group of musicians who play together on various instruments …' to paraphrase, the HS orchestra is 'a large group of proteins that play together on various receptors'. HS conducts this orchestra to ensure that proteins hit the right notes on their receptors but, in the manner of a true conductor, does it also set 'the musical pulse' and create rhythm and harmony attractive to the cell? This is too big a question to answer but fun to think about as you read this review.
Collapse
Affiliation(s)
- John Gallagher
- Cancer Research UK Manchester Institute, Institute of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Nigam SK, Bush KT. Growth factor-heparan sulfate "switches" regulating stages of branching morphogenesis. Pediatr Nephrol 2014; 29:727-35. [PMID: 24488503 DOI: 10.1007/s00467-013-2725-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 11/27/2022]
Abstract
The development of branched epithelial organs, such as the kidney, mammary gland, lung, pancreas, and salivary gland, is dependent upon the involvement and interaction of multiple regulatory/modulatory molecules, including soluble growth factors, extracellular matrix components, and their receptors. How the function of these molecules is coordinated to bring about the morphogenetic events that regulate iterative tip-stalk generation (ITSG) during organ development remains to be fully elucidated. A common link to many growth factor-dependent morphogenetic pathways is the involvement of variably sulfated heparan sulfates (HS), the glycosaminoglycan backbone of heparan sulfate proteoglycans (HSPG) on extracellular surfaces. Genetic deletions of HS biosynthetic enzymes (e.g., C5-epimerase, Hs2st), as well as considerable in vitro data, indicate that variably sulfated HS are essential for kidney development, particularly in Wolffian duct budding and early ureteric bud (UB) branching. A role for selective HS modifications by enzymes (e.g., Ext, Ndst, Hs2st) in stages of branching morphogenesis is also strongly supported for mammary gland ductal branching, which is dependent upon a set of growth factors similar to those involved in UB branching. Taken together, these studies provide support for the notion that the specific spatio-temporal HS binding of growth factors during the development of branched epithelial organs (such as the kidney, mammary gland, lung and salivary gland) regulates these complex processes by potentially acting as "morphogenetic switches" during the various stages of budding, branching, and other developmental events central to epithelial organogenesis. It may be that two or more growth factor-selective HS interactions constitute a functionally equivalent morphogenetic switch; this may help to explain the paucity of severe branching phenotypes with individual growth factor knockouts.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093-0693, USA,
| | | |
Collapse
|
12
|
Murray P, Camussi G, Davies JA, Edgar D, Hengstschlager M, Kenny S, Remuzzi G, Werner C. The KIDSTEM European Research Training Network: Developing a Stem Cell Based Therapy to Replace Nephrons Lost through Reflux Nephropathy. Organogenesis 2012; 3:2-5. [PMID: 19279693 DOI: 10.4161/org.3.1.3440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The incidence and prevalence of end stage renal disease (ESRD) continues to grow worldwide at a rate that is far in excess of the growth rate of the general population. In children and young adults the most common cause of ESRD is vesicoureteric reflux (VUR), a condition where urine from the bladder re-enters the kidney, predisposing to pyelonephritis, renal scarring, and in the most severe cases, ESRD. However, there is usually a time-window of several years from initial diagnosis of VUR to the development of ESRD, which presents an opportunity to design therapies aimed at preventing disease progression by repairing renal tissue before it becomes nonfunctional. Advances in our understanding of kidney development coupled with recent progress in stem cell science and tissue engineering, present an unprecedented opportunity to design a stem cell-based therapy for this clinical problem. KIDSTEM will investigate the properties of several different stem cell types (kidney stem cells, embryonic stem cells, amniotic fluid stem cells and mesenchymal stem cells) to determine which is most appropriate for the generation of functional renal tissue promoted by specifically designed biomaterials to facilitate the generation of functional nephrons.
Collapse
Affiliation(s)
- Patricia Murray
- School of Biological Sciences; University of Liverpool; Liverpool UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors. Methods Mol Biol 2012; 836:239-55. [PMID: 22252639 DOI: 10.1007/978-1-61779-498-8_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteoglycans are macromolecules expressed on the cell surfaces and in the extracellular matrix of most animal tissues (Annu Rev Biochem 68:729-777, 1999; Int Rev Cell Mol Biol 276:105-159, 2009). Heparan sulfate proteoglycans (HSPGs) are essential for animal development and homeostasis, and are involved in various pathological processes. The functions of HSPGs are largely exerted through interaction of the heparan sulfate (HS) side chains with different types of ligands, including diverse molecules such as cytokines, enzymes, and pathogens. One of the important roles of cell surface HSPGs is to mediate cytokine-induced cell signaling through interaction with growth factors (GFs) and their cognate receptors. A selective dependence of GFs for different structural features of HS has been demonstrated by applying cell models that are mutated variously in HS structure due to deficiency in enzymes involved in the biosynthesis of HS chains.
Collapse
|
14
|
Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 2011; 356:19-27. [PMID: 21600196 DOI: 10.1016/j.ydbio.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine (Division of Nephrology and Hypertension), University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sebinger DDR, Unbekandt M, Ganeva VV, Ofenbauer A, Werner C, Davies JA. A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PLoS One 2010; 5:e10550. [PMID: 20479933 PMCID: PMC2866658 DOI: 10.1371/journal.pone.0010550] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/16/2010] [Indexed: 02/05/2023] Open
Abstract
Here, we present a novel method for culturing kidneys in low volumes of medium that offers more organotypic development compared to conventional methods. Organ culture is a powerful technique for studying renal development. It recapitulates many aspects of early development very well, but the established techniques have some disadvantages: in particular, they require relatively large volumes (1–3 mls) of culture medium, which can make high-throughput screens expensive, they require porous (filter) substrates which are difficult to modify chemically, and the organs produced do not achieve good cortico-medullary zonation. Here, we present a technique of growing kidney rudiments in very low volumes of medium–around 85 microliters–using silicone chambers. In this system, kidneys grow directly on glass, grow larger than in conventional culture and develop a clear anatomical cortico-medullary zonation with extended loops of Henle.
Collapse
Affiliation(s)
- David D. R. Sebinger
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Mathieu Unbekandt
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Veronika V. Ganeva
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Andreas Ofenbauer
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Jamie A. Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
16
|
Pan J, Qian Y, Zhou X, Lu H, Ramacciotti E, Zhang L. Chemically oversulfated glycosaminoglycans are potent modulators of contact system activation and different cell signaling pathways. J Biol Chem 2010; 285:22966-75. [PMID: 20418371 DOI: 10.1074/jbc.m109.063735] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contaminated heparin was associated with adverse reactions by activating the contact system. Chemically oversulfated/modified glycosaminoglycans (GAGs) consisting of heparan sulfate, dermatan sulfate, and chondroitin sulfate have been identified as heparin contaminants. Current studies demonstrated that each component of oversulfated GAGs was comparable with oversulfated chondroitin sulfate in activating the contact system. By testing a series of unrelated negatively charged compounds, we found that the contact system recognized negative charges rather than specific chemical structures. We further tested how oversulfated GAGs and contaminated heparins affect different cell signaling pathways. Our data showed that chemically oversulfated GAGs and contaminated heparin had higher activity than the parent compounds and authentic heparin, indicative of sulfation-dominant and GAG sequence-dependent activities in BaF cell-based models of fibroblast growth factor/fibroblast growth factor receptor, glial cell line-derived neurotrophic factor/c-Ret, and hepatocyte growth factor/c-Met signaling. In summary, these data indicate that contaminated heparins intended for blood anticoagulation not only activated the contact system but also modified different GAG-dependent cell signaling pathways.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Rudd TR, Yates EA. Conformational degeneracy restricts the effective information content of heparan sulfate. MOLECULAR BIOSYSTEMS 2010; 6:902-8. [PMID: 20567777 DOI: 10.1039/b923519a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear, sulfated polysaccharide heparan sulfate occupies a pivotal position in intercellular signalling events, interacting with numerous proteins on the cell surface and in the extracellular matrix. Its complex sequences suggest high potential information content but, despite extensive efforts, a clear relationship between its substitution pattern and biological activity remains elusive. This results from technical limitations, compounded by attempts to correlate substitution pattern directly with activity without considering other conformational factors. For a series of systematically modified analogues of heparan sulfate, the relationship between substitution pattern and experimental (13)C NMR chemical shifts, which act as reporters of the presence of conformational change, particularly around the glycosidic linkages, was explored through chemometric analysis. From analysis of the experimental data it was evident that wide linkage variation arose from O-sulfation in iduronate and N-sulfation in glucosamine residues but, their effects were distinct, while 6-O-sulfation had much less impact. Models of saccharide sequences showed that the maximum spread of variation in glycosidic linkages occurred before maximum sequence diversity and revealed a highly degenerate system: a fraction of possible sequences is sufficient to provide diverse backbone conformations to satisfy particular protein binding requirements. The unique information content potentially available in HS sequences, defined ultimately by conformation, is vastly inferior to the potential sequence diversity.
Collapse
Affiliation(s)
- Timothy R Rudd
- School of Biological Sciences, University of Liverpool, Liverpool, UK L69 7ZB
| | | |
Collapse
|
18
|
Shah MM, Sakurai H, Sweeney DE, Gallegos TF, Bush KT, Esko JD, Nigam SK. Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Dev Biol 2010; 339:354-65. [PMID: 20059993 DOI: 10.1016/j.ydbio.2009.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 01/14/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFbeta superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st(-)(/)(-) kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st(-/-) UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:1-17. [PMID: 20807638 DOI: 10.1016/s1877-1173(10)93001-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two major types of glycosaminoglycan (GAG) polysaccharides, heparan sulfate and chondroitin sulfate, are polymerized and modified by enzymes that are encoded by more than 40 genes in animal cells. Because of the expression repertoire of the GAG assembly and modification enzymes, each heparan sulfate and chondroitin sulfate chain has a sulfation pattern, chain length, and fine structure that is potentially unique to each animal cell. GAGs interact with hundreds of proteins. Such interactions protect growth factors, chemokines, and cytokines against proteolysis. GAGs catalyze protease (such as thrombin) inhibition by serpins. GAGs regulate multiple signaling pathways including, but not limited to, fibroblast growth factor (FGF)/FGFR, hepatocyte growth factor (HGF)/c-Met, glial cell line-derived neurotrophic factor (GDNF)/c-Ret/GFRalpha1, vascular endothelial growth factor (VEGF)/VEGFR, platelet derived growth factor (PDGF)/PDGFR, BAFF/TACI, Indian hedgehog, Wnt, and BMP signaling pathways,where genetic studies have revealed an absolute requirement for GAGs in these pathways. Most importantly, protein/GAG aggregates induce thrombin generation and immune system upregulation by activating the contact system. Abnormal protein/GAG aggregates are associated with a variety of devastating human diseases including, but not limited to, Alzheimer's, diabetes, prion or transmissible spongiform encephalopathies, Lupus, heparin-induced thrombocytopenia/thrombosis, and different kinds of cancers. Therefore, GAGs are essential components of modern molecular biology and human physiology. Understanding GAG structure and function at molecular level with regard to development and health represents a unique opportunity in combating different kinds of human diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
20
|
Piltonen M, Bespalov MM, Ervasti D, Matilainen T, Sidorova YA, Rauvala H, Saarma M, Männistö PT. Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Exp Neurol 2009; 219:499-506. [DOI: 10.1016/j.expneurol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/15/2009] [Accepted: 07/07/2009] [Indexed: 12/17/2022]
|
21
|
Parkash V, Leppänen VM, Virtanen H, Jurvansuu JM, Bespalov MM, Sidorova YA, Runeberg-Roos P, Saarma M, Goldman A. The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signaling and heparin binding. J Biol Chem 2008; 283:35164-72. [PMID: 18845535 DOI: 10.1074/jbc.m802543200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.
Collapse
Affiliation(s)
- Vimal Parkash
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rudd TR, Guimond SE, Skidmore MA, Duchesne L, Guerrini M, Torri G, Cosentino C, Brown A, Clarke DT, Turnbull JE, Fernig DG, Yates EA. Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Glycobiology 2007; 17:983-93. [PMID: 17580314 DOI: 10.1093/glycob/cwm062] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As model compounds for the biologically important heparan sulfate, eight systematically modified heparin derivatives were studied by synchrotron radiation circular dichroism (SRCD), which is sensitive to uronic acid conformation. Substitution pattern altered uronic acid conformation, even when structural changes were made in adjacent glucosamine residues (e.g. 6-O-desulfation) and did not involve a chromophore. SRCD spectra of these derivatives following conversion to the Na+, K+, Mg2+, Ca2+, Mn2+, Cu2+ and Fe3+ cation forms revealed that almost all substitution/cation combinations resulted in unique spectra, showing that each was structurally distinct. The detailed effects that binding Na+, K+, Mg2+ and Ca2+ ions had on a 2-de-O-sulfated derivative was also studied by NMR, revealing that subtle changes in conformation (by NOE) and flexibility (by T2 measurements) resulted. Conversion to the K+ and Cu2+ ion forms also drastically modified biological activity, from inactive to active, in a cell-based assay of fibroblast growth factor-receptor (FGF2/FGFR1c) signalling and this effect was not reproduced by free cations. These observations could explain the often-contradictory data concerning structure-activity relationships for these derivatives in the literature and, furthermore, argue strongly against the established trend of considering sequence as a complete structural definition. It also provides additional means of modifying the activity of these polysaccharides and suggests a possible additional level of control in biological systems. There are also obvious potential applications for these findings in the biotechnology sphere.
Collapse
Affiliation(s)
- Timothy R Rudd
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Michael L, Sweeney DE, Davies JA. The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. J Anat 2007; 210:89-97. [PMID: 17229286 PMCID: PMC2100263 DOI: 10.1111/j.1469-7580.2006.00670.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The urine collecting duct system of the metanephric kidney develops by growth and branching morphogenesis of an unbranched progenitor tubule, the ureteric bud. Bud branching is mainly dichotomous and new branches form from existing branch tips, which are also the main sites of cell proliferation in the system. This behaviour, and the fact that some genes (e.g. Wnt11, Sox9) are expressed only in tips, suggests that tip cells are in a specific state of differentiation. In this report, we show that the lectin Dolichos biflorus agglutinin (DBA), hitherto regarded and used as a general marker of developing renal collecting ducts, binds to most of the duct system but does not bind to the very tips of growing branches. The zone avoided by DBA corresponds to the zone that expresses Wnt11, and the zone that shows enhanced cell proliferation. If branching of the ureteric bud of cultured embryonic kidneys is inhibited in organ culture, by blocking the kidney's endogenous glial cell-derived neurothrophic factor (GDNF)-based branch-promoting signals, the DBA-binding zone extends to the very end of the tip but is lost from there when branching is re-activated. Similarly, if excess GDNF is provided to growing kidneys, the DBA-free zone expands. DBA-staining status therefore appears to be a sensitive indicator of the morphogenetic activity of the collecting duct system.
Collapse
Affiliation(s)
- Lydia Michael
- Centre for Integrative Physiology, Edinburgh University College of Medicine, Edinburgh, UK
| | | | | |
Collapse
|
24
|
Alfano I, Vora P, Mummery R, Mulloy B, Rider C. The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding. Biochem J 2007; 404:131-40. [PMID: 17298301 PMCID: PMC1868828 DOI: 10.1042/bj20061747] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/24/2007] [Accepted: 02/14/2007] [Indexed: 11/17/2022]
Abstract
GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRalpha1 (GDNF family receptor alpha1), and heparin-bound GDNF is able to bind GFRalpha1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRalpha1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF-GFRalpha1 interaction, and the extracellular domain of GFRalpha1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF-GFRalpha1 engagement.
Collapse
Key Words
- artemin
- gdnf family receptor α1 (gfrα1)
- glial cell-line-derived neurotrophic factor (gdnf)
- heparan sulfate
- heparin
- pc12 cells
- art, artemin
- bmp-2, bone morphogenetic protein 2
- dmem, dulbecco's modified eagle's medium
- fgf-2, fibroblast growth factor-2
- gag, glycosaminoglycan
- gdnf, glial cell-line-derived neurotrophic factor
- gfrα, gdnf family receptor α
- gfl, gdnf family ligand
- hs, heparan sulfate
- ntn, neurturin
- 2-ost, 2-o-sulfotransferase psp, persephin
- rhgdnf, recombinant human gdnf
- tbs/t, tris-buffered saline containing 0.05% tween 20, tgf-β, transforming growth factor β
Collapse
Affiliation(s)
- Ivan Alfano
- *School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, U.K
| | - Parvez Vora
- *School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, U.K
| | - Rosemary S. Mummery
- *School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, U.K
| | - Barbara Mulloy
- †Laboratory for Molecular Structure, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QC, U.K
| | - Christopher C. Rider
- *School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, U.K
| |
Collapse
|
25
|
Wang XJ, Chen XH, Yang XY, Geng MY, Wang LM. Acidic oligosaccharide sugar chain, a marine-derived oligosaccharide, activates human glial cell line-derived neurotrophic factor signaling. Neurosci Lett 2007; 417:176-80. [PMID: 17403572 DOI: 10.1016/j.neulet.2007.02.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/28/2007] [Accepted: 02/06/2007] [Indexed: 11/16/2022]
Abstract
Gial derived neurotrophic factor (GDNF) modulates neuronal cell differentiation during development and protects against neurodegeneration by preventing apoptosis at maturity. GDNF's role in tissue maintenance has generated interest in the therapeutic potential of GDNF in treating neurological disorders such as Parkinson's disease. Heparan sulfate has been shown to be essential for GDNF signaling and altering the levels of heparan sulfate promotes or inhibits GDNF functional activity. To search for other oligosaccharides capable of modulating GDNF activity as potential therapeutic molecules, we investigated the effect of acidic oligosaccharide sugar chain (AOSC) and its sulfated derivative on GDNF induced neurotrophic events by using Western-blotting, immunofluorescence cell staining, and immunoprecipitation techniques in PC12 cells expressing the GDNF receptors GFR alpha 1-Ret. AOSC significantly improved the neurite outgrowth and activated c-Ret phosphorylation in PC12-GFR alpha 1-Ret cells, but its sulfated derivative inhibited GDNF activity. Studies to understand the opposing biological effects of AOSC and its sulfated derivative on GDNF activity demonstrated that reduced GDNF binding to PC12-GFR alpha 1-Ret cell surface in the presence of the sulfated derivative likely suppressed GDNF activity as both AOSC and its sulfated derivatives had similar binding affinities to GDNF. This study illustrates the importance of oligosaccharide structure and charge on influencing GDNF activity and the potential use of oligosaccharides in modulating GDNF activity for therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Ji Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nan Chang 330013, China
| | | | | | | | | |
Collapse
|
26
|
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CLR, Dierks T. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 2007; 129:290-307. [PMID: 17337080 DOI: 10.1016/j.jbiotec.2007.01.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/22/2006] [Accepted: 01/26/2007] [Indexed: 12/24/2022]
Abstract
Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".
Collapse
Affiliation(s)
- William C Lamanna
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Organ culture of mouse embryonic kidneys is a powerful system for studying normal renal development and for researching the developmental effects of experimental perturbations (drugs, antibodies, interfering RNA, and so on). In standard protocols, embryonic kidneys are isolated by delicate micro-dissection and placed in organ culture as soon as possible after the death of the donor mouse, before there is time to genotype them or to transport them elsewhere. This report demonstrates that fully viable embryonic kidneys can be isolated and cultured from crudely dissected caudal portions of embryos that have been stored on ice or at 4 degrees C for several days. This very simple technique can save considerable resources in laboratories that culture kidneys of transgenic mice: (i) cold storage allows embryos to be genotyped before their kidneys are cultured, and (ii) cold transport allows kidney research laboratories to study kidneys of transgenic mice raised elsewhere without the need for expensive importing of the mouse line itself. It will therefore substantially augment the ability of kidney research labs to perform pilot experiments on large numbers of different transgenic animals and to collaborate in new ways.
Collapse
Affiliation(s)
- J A Davies
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, UK.
| |
Collapse
|
28
|
Abstract
[Image: see text] Heparin, the well-known anticoagulant polysaccharide, is also active in many other biological systems owing to its structural similarity to HS, but usually lacks selectivity because it is more highly sulfated. A series of straightforward chemical reactions (de-O-sulfation, de-N-sulfation and re-N-acetylation), carried out to partial or complete extent, were combined, resulting in a number of modified heparin polysaccharide derivatives with altered properties. These exhibited a range of abilities to promote cell signalling through the FGF/FGFR tyrosine kinase signalling system, in an in vitro cell assay with combinations of FGF-1, -2, -3 and FGFR 1 and 3. One polysaccharide (N-acetylated, 6-O- and 2-O-sulfated heparin), with only a fraction (<10(-3)) of the anticoagulant activity of heparin (200 U . mg(-1)), promoted FGF-2-mediated angiogenesis (10-fold) and therefore had an improved ratio of pro-angiogenic activity to anticoagulant activity in excess of 10(4) compared to heparin. These results demonstrate that heparin-derived polysaccharides can be engineered for selected activities and have potential in a wide range of medical, biotechnological and tissue-engineering applications. Effect of selected engineered heparin polysaccharides on angiogenesis.
Collapse
Affiliation(s)
- Scott E Guimond
- School of Biological Sciences, University of Liverpool, L69 7ZB, UK
| | | | | |
Collapse
|
29
|
Abstract
The TGF-β (transforming growth factor-β) cytokine superfamily in mammals contains some 30 members. These dimeric proteins are characterized by a strongly conserved cystine knot-based structure. They regulate the proliferation, differentiation and migration of many cell types, and therefore have important roles in morphogenesis, organogenesis, tissue maintenance and wound healing. Thus far, around one-quarter of these cytokines have been shown to bind to heparin and heparan sulphate. Well-established examples are the TGF-β isoforms 1 and 2, and the BMPs (bone morphogenetic proteins) -2 and -4. In studies in my laboratory, we have shown that GDNF (glial-cell-line-derived neurotrophic factor) and its close relatives neurturin and artemin bind to heparin and heparan sulphate with high affinity. We have reported previously that binding of GDNF is highly dependent on the presence of 2-O-sulphate groups. More recently, we and others have been investigating the heparin/heparan sulphate-binding properties of BMP-7, which is a representative of a distinct BMP subgroup from that of BMPs -2 and -4. Interestingly, several of the various specific BMP antagonist proteins also bind to heparin and heparan sulphate. Much remains to be learnt about the nature and role of glycosaminoglycan interactions in the TGF-β superfamily, but current work suggests that these cytokines do not share a single highly conserved heparin/heparan sulphate-binding site.
Collapse
Affiliation(s)
- C C Rider
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, UK.
| |
Collapse
|
30
|
Michael L, Sweeney DE, Davies JA. A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney Int 2005; 68:2010-8. [PMID: 16221201 DOI: 10.1111/j.1523-1755.2005.00655.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Branching morphogenesis of the ureteric bud/collecting duct epithelium is an important feature of kidney development. Recent work has identified many transcription factors and paracrine signaling molecules that regulate branching, but the physical mechanisms by which these signals act remain largely unknown. The actin cytoskeleton is a common component of mechanisms of morphogenesis. We have therefore studied the expression of, and requirement for actin filaments in the ureteric bud, a branching epithelium of the mammalian kidney. METHODS Embryonic kidney rudiments were grown in organ culture. Actin expression in kidneys growing normally and those in which branching was inhibited was examined using labeled phalloidin. The morphogenetic effects of inhibiting actin organization and tension using cytochalasin D, butanedione monoxime, and Rho kinase ROCK inhibitors were assessed using immunofluorescence. RESULTS F-actin is expressed particularly strongly in the apical domains of cells at the tips of branching ureteric bud, but this expression depends on the bud actively growing and branching. Blocking the polymerization of actin using cytochalasin D inhibits ureteric bud branching reversibly, as does blocking myosin function using butadiene monoxime. Inhibiting the activation of ROCK, a known activator of myosin, with the drugs Y27632 or with H1152 inhibits the expression of strong actin bundles in the ureteric bud tips and inhibits ureteric bud branching without inhibiting other aspects of renal development. CONCLUSION The formation of tension-bearing actin-myosin complexes is essential for branching morphogenesis in the developing kidney.
Collapse
Affiliation(s)
- Lydia Michael
- Centre for Integrative Physiology, Edinburgh University College of Medicine, Scotland, UK
| | | | | |
Collapse
|