1
|
Becker AMD, Decker AH, Flórez-Grau G, Bakdash G, Röring RJ, Stelloo S, Vermeulen M, Piet B, Aarntzen EHJG, Verdoes M, de Vries IJM. Inhibition of CSF-1R and IL-6R prevents conversion of cDC2s into immune incompetent tumor-induced DC3s boosting DC-driven therapy potential. Cell Rep Med 2024; 5:101386. [PMID: 38242119 PMCID: PMC10897516 DOI: 10.1016/j.xcrm.2023.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The human dendritic cell (DC) family has recently been expanded by CD1c+CD14+CD163+ DCs, introduced as DC3s. DC3s are found in tumors and peripheral blood of cancer patients. Here, we report elevated frequencies of CD14+ cDC2s, which restore to normal frequencies after tumor resection, in non-small cell lung cancer patients. These CD14+ cDC2s phenotypically resemble DC3s and exhibit increased PD-L1, MERTK, IL-10, and IDO expression, consistent with inferior T cell activation ability compared with CD14- cDC2s. In melanoma patients undergoing CD1c+ DC vaccinations, increased CD1c+CD14+ DC frequencies correlate with reduced survival. We demonstrate conversion of CD5+/-CD1c+CD14- cDC2s to CD14+ cDC2s by tumor-associated factors, whereas monocytes failed to express CD1c under similar conditions. Targeted proteomics identified IL-6 and M-CSF as dominant drivers, and we show that IL-6R and CSF1R inhibition prevents tumor-induced CD14+ cDC2s. Together, this indicates cDC2s as direct pre-cursors of DC3-like CD1c+CD14+ DCs and provides insights into the importance and modulation of CD14+ DC3s in anti-tumor immune responses.
Collapse
Affiliation(s)
- Anouk M D Becker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Annika H Decker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Berber Piet
- Department of Pulmonology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
2
|
De Vita S, Li Y, Harris CE, McGuinness MK, Ma C, Williams DA. The gp130 Cytokine Interleukin-11 Regulates Engraftment of Vav1 -/- Hematopoietic Stem and Progenitor Cells in Lethally Irradiated Recipients. Stem Cells 2018; 36:446-457. [PMID: 29235178 DOI: 10.1002/stem.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
During bone marrow transplantation, hematopoietic stem and progenitor cells (HSPCs) respond to signals from the hematopoietic microenvironment by coordinately activating molecular pathways through Rho GTPases, including Rac. We have previously shown that deletion of Vav1, a hematopoietic-specific activator of Rac, compromises engraftment of transplanted adult HSPCs without affecting steady-state hematopoiesis in adult animals. Here, we show that Vav1-/- fetal HSPCs can appropriately seed hematopoietic tissues during ontogeny but cannot engraft into lethally irradiated recipients. We demonstrate that the engraftment defect of Vav1-/- HSPCs is abrogated in the absence of irradiation and demonstrate that Vav1 is critical for the response of HSPCs to the proinflammatory cytokine interleukin-11 (IL-11) that is upregulated in the marrow of irradiated recipients. Vav1-/- HSPCs display abnormal proliferative responses to IL-11 in vitro and dysregulated activation of pathways critical to engraftment of HSPCs. The engraftment of Vav1-/- HSPCs can be partially rescued in irradiated recipients treated with an anti-IL-11 antibody. These data suggest that HSPCs may respond to different functional demands by selective usage of the IL-11-Vav-Rac pathway, contextualizing further the recent view that HSPCs capable of reconstituting the blood system following transplantation might be distinct from those supporting hematopoiesis during homeostatic conditions. Stem Cells 2018; 36:446-457.
Collapse
Affiliation(s)
- Serena De Vita
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanhua Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, People's Republic of China
| | - Chad E Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meaghan K McGuinness
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clement Ma
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sugimoto K. Establishment of a sticky, large, oval-shaped thrombocyte cell line from tree frog as an ancestor of mammalian megakaryocytes. SPRINGERPLUS 2015; 4:447. [PMID: 26322253 PMCID: PMC4547970 DOI: 10.1186/s40064-015-1237-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
Maintenance of blood vessels is important for homeostasis. Many types of cells and cytokines are involved in angiogenesis and blood vessel repair. In mammals, platelets, which are produced from megakaryocytes, play a major role in hemostasis. Other vertebrates have no platelets in their bloodstream. In these animals, thrombocytes aggregate to form a thrombus. Therefore, I established a frog hematopoietic cell line to elucidate the mechanism of hematopoiesis in this species. The frog-derived thrombocytic cell line was established from a long-term bone marrow culture of Hyla japonica and was designated as a frog-derived unique hematopoietic non-adherent (FUHEN) cell line. The FUHEN cells had unique characteristics in that they proliferated in suspension culture without adherence to the culture flask, and the shapes of the FUHEN cells changed drastically to become very large ovals with growth. These cells reached more than 40 µm in length and had multi-lobed nuclei. The FUHEN cells expressed CD41, a specific surface marker of thrombocytes. These results indicated that the FUHEN cells were thrombocytes. Deprivation of divalent ions quickly induced adherence of the cells to the petri dish. This characteristic may be important for hemostasis. Furthermore, some of the FUHEN cells survived at 16 °C for 1 month and re-established proliferation when the cells were moved to 28 °C. Taken together, this new thrombocytic frog cell line, as an ancestor of mammalian megakaryocytes, could provide useful material to study the functions of thrombocytes and the hemostasis mechanism of amphibians.
Collapse
Affiliation(s)
- Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Ikarashi-2, Niigata 950-2181 Japan
| |
Collapse
|
4
|
Sekulovic S, Imren S, Humphries K. High level in vitro expansion of murine hematopoietic stem cells. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2A.7. [PMID: 18770636 DOI: 10.1002/9780470151808.sc02a07s4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Development of strategies to extensively expand hematopoietic stem cells (HSCs) in vitro will be a major factor in enhancing the success of a range of transplant-based therapies for malignant and genetic disorders. In addition to potential clinical applications, the ability to increase the number of HSCs in culture will facilitate investigations into the mechanisms underlying self-renewal. In this unit, we describe a robust strategy for consistently achieving over 1000-fold net expansion of HSCs in short-term in vitro culture by using novel engineered fusions of the N-terminal domain of nucleoporin 98 (NUP98) and the homeodomain of the hox transcription factor, HOXA10 (so called NUP98-HOXA10hd fusion). We also provide a detailed protocol for monitoring the magnitude of HSC expansion in culture by limiting dilution assay of competitive lympho-myeloid repopulating units (CRU Assay). These procedures provide new possibilities for achieving significant numbers of HSCs in culture, as well as for studying HSCs biochemically and genetically.
Collapse
Affiliation(s)
- Sanja Sekulovic
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
5
|
Ohta H, Sekulovic S, Bakovic S, Eaves CJ, Pineault N, Gasparetto M, Smith C, Sauvageau G, Humphries RK. Near-maximal expansions of hematopoietic stem cells in culture using NUP98-HOX fusions. Exp Hematol 2007; 35:817-30. [PMID: 17577930 PMCID: PMC2774852 DOI: 10.1016/j.exphem.2007.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Strategies to expand hematopoietic stem cells (HSCs) ex vivo are of key interest. The objective of this study was to resolve if ability of HOXB4, previously documented to induce a significant expansion of HSCs in culture, may extend to other HOX genes and also to further analyze the HOX sequence requirements to achieve this effect. METHODS To investigate the ability of Nucleoporin98-Homeobox fusion genes to stimulate HSC self-renewal, we evaluated their presence in 10- to 20-day cultures of transduced mouse bone marrow cells. Stem cell recovery was measured by limiting-dilution assay for long-term competitive repopulating cells (CRU Assay). RESULTS These experiments revealed remarkable expansions of Nucleoporin98-Homeobox-transduced HSCs (1000-fold to 10,000-fold over input) in contrast to the expected decline of HSCs in control cultures. Nevertheless, the Nucleoporin98-Homeobox-expanded HSCs displayed no proliferative senescence and retained normal lympho-myeloid differentiation activity and a controlled pool size in vivo. Analysis of proviral integration patterns showed the cells regenerated in vivo were highly polyclonal, indicating they had derived from a large proportion of the initially targeted HSCs. Importantly, these effects were preserved when all HOX sequences flanking the homeodomain were removed, thus defining the homeodomain as a key and independent element in the fusion. CONCLUSION These findings create new possibilities for investigating HSCs biochemically and genetically and for achieving clinically significant expansion of human HSCs.
Collapse
Affiliation(s)
- Hideaki Ohta
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sanja Sekulovic
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics
| | - Silvia Bakovic
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics
| | - Nicolas Pineault
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Maura Gasparetto
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Clayton Smith
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - R. Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|