1
|
Velapure P, Kansal D, Bobade C. Tumor microenvironment-responsive nanoformulations for breast cancer. DISCOVER NANO 2024; 19:212. [PMID: 39708097 DOI: 10.1186/s11671-024-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/23/2024]
Abstract
Nanomedicine, the most promising approach for regulated and targeted drug delivery, is frequently applied in cancer treatment. Essentially, accumulating evidence indicates that nanomedicine has positive results in the treatment of breast cancer (BC), with many BC patients benefiting from nanomedicine-related treatments. Currently, nanodrug delivery systems based on stimulus responses are gaining popularity because of their additional ability to manage drug release depending on the interior environment of the cancer. This review includes a synopsis of several types of internal (pH, redox, enzyme, reactive oxygen species, and hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspectives for forthcoming times. Stimulus-responsive nanoparticles can remain stable under physiological conditions while being rapidly activated to release drugs in response to specific stimuli, prolonging blood circulation and increasing cancer cellular uptake, resulting in excellent therapeutic performance and improved biosafety. In this paper, we discuss tumor microenvironment responsive Nanoformulation for breast cancer treatment.
Collapse
Affiliation(s)
- Pallavi Velapure
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Divyanshi Kansal
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Chandrashekhar Bobade
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India.
| |
Collapse
|
2
|
Wang J, Zhao X, Qiu L. Drug-induced self-assembled nanovesicles for chloroquine to sensitize MDR tumors to mitoxantrone hydrochloride. Colloids Surf B Biointerfaces 2024; 245:114358. [PMID: 39509852 DOI: 10.1016/j.colsurfb.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Multidrug resistance (MDR) is an incidental trouble post-chemotherapy, necessitating innovative therapeutic strategies. This study explores the potential of chloroquine (CQ) as a sensitizer for mitoxantrone hydrochloride (MitH) in drug-resistant tumors and introduces a novel pH-responsive drug-induced self-assembly nanovesicle (DIV) based on an amphiphilic polyphosphonitrile (PPAP) for the co-delivery of MitH and CQ. PPAP cannot self-assemble into nanovesicles alone, but when a certain amount of MitH was added, the multiple non-covalent interactions between PPAP and MitH contributed to the formation of DIV, which exactly improved the co-loading content of MitH and CQ to a large extent. CQ prevents MitH efflux and autophagy to reverse MitH resistance. Given the synergy between MitH and CQ at a 1:2 mass ratio with a combination index of 0.40 in K562/ADR cells, MitH and CQ co-loaded DIV (MC-DIV) is constructed and demonstrates a sensitivity index of 7.1 on cytotoxicity compared to free MitH. Furthermore, MC-DIV achieves extended circulation time, synchronous dual-drug delivery, and improved tumor targeting following systemic administration, resulting in exceptional antitumor efficacy in K562/ADR xenograft models with a tumor inhibition rate of 83.0 %. Overall, MC-DIV provides a viable method to maximize the loading capacity of nanocarriers, and potentially serves as a promising formulation for various MitH-resistant tumors.
Collapse
Affiliation(s)
- Juan Wang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhao
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
4
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Bhagya N, Chandrashekar KR. Liposome encapsulated anticancer drugs on autophagy in cancer cells - current and future perspective. Int J Pharm 2023:123105. [PMID: 37279869 DOI: 10.1016/j.ijpharm.2023.123105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Autophagy act as a double-edged sword in cancer with both tumor promoting and inhibiting roles. Under normal conditions of autophagy, the damaged cell organelles and other debris degrade inside the lysosome to provide energy and macromolecular precursors. However, enhanced autophagy can lead to apoptosis and programmed cell death highlighting its significance in cancer therapy. Liposome-based drug delivery systems for treating cancer patients have significant advantages over their non-formulated or free drug counterparts which could be effectively used to manipulate autophagy pathway in cancer patients. In the current review, drug uptake by the cells and its role in autophagy-mediated cancer cell death are discussed. Besides, the challenges and translational difficulties associated with the use of liposome-based chemotherapeutic drugs in clinical trials and in biomedical applications are also discussed.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| | - K R Chandrashekar
- Yenepoya Pharmacy and Ayush Research Centre (YEN PARC), Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
6
|
Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2202400. [PMID: 36453542 PMCID: PMC10023350 DOI: 10.1002/adhm.202202400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Combination therapy targeting multiple therapeutic targets is a favorable strategy to achieve better therapeutic outcomes in cancer and inflammatory diseases. Codelivery is a subfield of drug delivery that aims to achieve combined delivery of diverse therapeutic cargoes within the same delivery system, thereby ensuring delivery to the same site and providing an opportunity to tailor the release kinetics as desired. Among the wide range of materials being investigated in the design of codelivery systems, lipids have stood out on account of their low toxicity, biocompatibility, and ease of formulation scale-up. This review highlights the advances of the last decade in lipid-based codelivery systems focusing on the codelivery of drug-drug, drug-nucleic acid, nucleic acid-nucleic acid, and protein therapeutic-based combinations for targeted therapy in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chinmay M. Jogdeo
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sudipta Panja
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shrey Kanvinde
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ekta Kapoor
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
7
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, Guan W, Liu D, Wei Y, Rong D, Fang Y, Haider F, Lv H, Jin Z, Chen X, Mo Z, Li L, Yang S, Wang H. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy 2021; 18:1822-1840. [PMID: 34870550 PMCID: PMC9450985 DOI: 10.1080/15548627.2021.2002108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer. Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/β-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1
Collapse
Affiliation(s)
- Shaoyang Zhang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiufeng Liu
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Hui Li
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanhua Cai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daiyun Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Farhan Haider
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lv
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Jin
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuomao Mo
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lujie Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021; 100:119-143. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Most commonly recognized as a catabolic pathway, autophagy is a perplexing mechanism through which a living cell can free itself of excess cytoplasmic components, i.e., organelles, by means of certain membranous vesicles or lysosomes filled with degrading enzymes. Upon exposure to external insult or internal stimuli, the cell might opt to activate such a pathway, through which it can gain control over the maintenance of intracellular components and thus sustain homeostasis by intercepting the formation of unnecessary structures or eliminating the already present dysfunctional or inutile organelles. Despite such appropriateness, autophagy might also be considered a frailty for the cell, as it has been said to have a rather complicated role in tumorigenesis. A merit in the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. In fact, several investigations on tumorigenesis have reported diminished levels of autophagic activity in tumor cells, which might result in transition to malignancy. On the contrary, autophagy has been suggested to be a seemingly favorable mechanism to progressed malignancies, as it contributes to survival of such cells. Based on the recent literature, this mechanism might also be activated upon the entry of engineered nanomaterials inside a cell, supposedly protecting the host from foreign materials. Accordingly, there is a good chance that therapeutic interventions for modulating autophagy in malignant cells using nanoparticles may sensitize cancerous cells to certain treatment modalities, e.g., radiotherapy. In this review, we will discuss the signaling pathways involved in autophagy and the significance of the mechanism itself in apoptosis and tumorigenesis while shedding light on possible alterations in autophagy through engineered nanomaterials and their potential therapeutic applications in cancer. SIGNIFICANCE STATEMENT: Autophagy has been said to have a complicated role in tumorigenesis. In the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. On the contrary, autophagy has been suggested to be a favorable mechanism to progressed malignancies. This mechanism might be affected upon the entry of nanomaterials inside a cell. Accordingly, therapeutic interventions for modulating autophagy using nanoparticles may sensitize cancerous cells to certain therapies.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Amir Zarebkohan
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zinat Shams
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Fatemeh Radnia
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zahra Bahmanpour
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Saman Sargazi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ramin Saravani
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sakine Shirvalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sheida Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ziba Nazarlou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| |
Collapse
|
10
|
Tian JY, Chi CL, Bian G, Xing D, Guo FJ, Wang XQ. PSMA conjugated combinatorial liposomal formulation encapsulating genistein and plumbagin to induce apoptosis in prostate cancer cells. Colloids Surf B Biointerfaces 2021; 203:111723. [PMID: 33839474 DOI: 10.1016/j.colsurfb.2021.111723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/27/2021] [Accepted: 03/24/2021] [Indexed: 01/27/2023]
Abstract
Although the biomedical sciences have achieved tremendous success in developing novel approaches to managing prostate cancer, this disease remains one of the major health concerns among men worldwide. Liposomal formulations of single drugs have shown promising results in cancer treatment; however, the use of multi drugs has shown a better therapeutic index than individual drugs. The identification of cancer-specific receptors has added value to design targeted drug delivering nanocarriers. We have developed genistein and plumbagin co-encapsulating liposomes (∼120 nm) with PSMA specific antibodies to target prostate cancer cells selectively in this work. These liposomes showed >90 % decrease in PSMA expressing prostate cancer cell proliferation without any appreciable toxicity to healthy cells and human red blood cells. Release of plumbagin and genistein was found to decrease the expression of PI3/AKT3 signaling proteins and Glut-1 receptors (inhibited glucose uptake and metabolism), respectively. The decrease in migration potential of cells and induced apoptosis established the observed anti-proliferative effect in prostate cancer cell lines. The discussed strategy of developing novel, non-toxic, and PSMA specific antibody conjugated liposomes carrying genistein and plumbagin drugs may also be used for encapsulating other drugs and inhibit the growth of different types of cancers.
Collapse
Affiliation(s)
- Jing-Yan Tian
- Department of Urology, Second Division of The First Hospital of Jilin University, 3302 Jilin Rd, Changchun, 130031, Jilin, People's Republic of China
| | - Chang-Liang Chi
- Department of Urology, Second Division of The First Hospital of Jilin University, 3302 Jilin Rd, Changchun, 130031, Jilin, People's Republic of China
| | - Ge Bian
- Department of Urology, Second Division of The First Hospital of Jilin University, 3302 Jilin Rd, Changchun, 130031, Jilin, People's Republic of China
| | - Dong Xing
- Department of Urology, Second Division of The First Hospital of Jilin University, 3302 Jilin Rd, Changchun, 130031, Jilin, People's Republic of China
| | - Feng-Jun Guo
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, 218 Ziqiang Rd, Changchun, 130041, Jilin, People's Republic of China.
| | - Xiao-Qing Wang
- Department of Urology, Second Division of The First Hospital of Jilin University, 3302 Jilin Rd, Changchun, 130031, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Nanomedicine Reformulation of Chloroquine and Hydroxychloroquine. Molecules 2020; 26:molecules26010175. [PMID: 33396545 PMCID: PMC7794963 DOI: 10.3390/molecules26010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.
Collapse
|
12
|
Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:1003-1020. [PMID: 35582219 PMCID: PMC8992571 DOI: 10.20517/cdr.2020.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.
Collapse
|
13
|
Condello M, Mancini G, Meschini S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front Pharmacol 2020; 11:787. [PMID: 32547395 PMCID: PMC7272661 DOI: 10.3389/fphar.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they have low toxicity and immunogenicity and they are biodegradable and versatile. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Giovanna Mancini
- Institute for Biological Systems, National Research Council, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
14
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Hou G, Bai Y, Jia A, Ren Y, Wang Y, Lu J, Wang P, Zhang J, Lu Z. Inhibition of autophagy improves resistance and enhances sensitivity of gastric cancer cells to cisplatin. Can J Physiol Pharmacol 2020; 98:449-458. [PMID: 32058824 DOI: 10.1139/cjpp-2019-0477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autophagy plays critical roles in tumorigenesis, while the effects of autophagy on chemoresistance of cancer cells had great disparity. This study aims to explore the impacts of autophagy on the sensitivity and resistance of gastric cancer cells to cisplatin (DDP). We firstly demonstrated that there was stronger autophagy activity in gastric cancer SGC-7901 cells than that in DDP-resisting SGC-7901/DDP cells. Then, we discovered that inhibiting autophagy by chloroquine (CQ) significantly enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP to SGC-7901 and SGC-7901/DDP cells. Moreover, CQ could partially reverse the resistance of SGC-7901/DDP cells to DDP in a concentration-dependent manner. However, the autophagy inducer everolimus (RAD001) had no obvious effects on the sensitivity of gastric cells to DDP. Mechanistically, we demonstrated that CQ might enhance the sensitivity of SGC-7901cells and improve the resistance of SGC-7901/DDP cells to DDP through inhibiting the mTORC1 pathway, especially to SGC-7901/DDP cells. Additionally, we found interfering Beclin-1 using Beclin-1 shRNA also enhanced the proliferation-inhibiting and apoptosis-inducing effects of DDP on gastric cancer cells by inhibiting phosphorylation of Akt. Our study shows that inhibiting autophagy could improve the chemoresistance and enhanced sensitivity of gastric cancer cells to DDP and provide a rationale for the administration of cisplatin combined with CQ for treating patients with gastric cancer.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yiru Bai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, People's Republic of China
| | - Ang Jia
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jie Lu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
16
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release 2019; 311-312:301-318. [PMID: 31446084 DOI: 10.1016/j.jconrel.2019.08.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
With the rapid development of engineered nanomaterials for various applications, in vivo toxicological studies for evaluating the potential hazardous effects of nanomaterials on environmental and human safety are in urgent need. Zebrafish has long been considered as the "gold standard" for biosafety assessments of chemicals and pollutants due to its high fecundity, cost-effectiveness, well-characterized developmental stages, optical transparency, and so forth. Thus, zebrafish holds great potential for high-throughput nanotoxicity screening. In this review, we summarize the in vivo toxicological profiles of different nanomaterials, including Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs, quantum dots, nanoscale metal-organic frameworks, etc, in zebrafish and focus on how the physicochemical properties (e.g., size, surface charge, and surface chemistry) of these nanomaterials influence their biosafety. In addition, we also report the recent advances of the in vivo delivery of nanopharmaceuticals using zebrafish as the model organism for therapeutic assessment, biodistribution tracking, and the controlled release of loaded drugs. Limitations and special considerations of zebrafish model are also discussed. Overall, zebrafish is expected to serve as a high-throughput screening platform for nanotoxicity and drug delivery assessment, which may instruct the design of safe nanomaterials and more effective nanomedicines.
Collapse
|
18
|
Lu YL, Ma YB, Feng C, Zhu DL, Liu J, Chen L, Liang SJ, Dong CY. Co-delivery of Cyclopamine and Doxorubicin Mediated by Bovine Serum Albumin Nanoparticles Reverses Doxorubicin Resistance in Breast Cancer by Down-regulating P-glycoprotein Expression. J Cancer 2019; 10:2357-2368. [PMID: 31258739 PMCID: PMC6584414 DOI: 10.7150/jca.30323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Combination chemotherapy is considered to be one of the most effective treatments for breast cancer by reducing the emergence of drug resistance. In this study, a novel drug delivery system based on bovine serum albumin nanoparticles (BSA NPs) was successfully developed. Doxorubicin (DOX) and cyclopamine (CYC), a potential anti-cancer agent that inhibits the hedgehog signaling pathway were entrapped into BSA NPs through electrostatic interactions and hydrophobic interactions, respectively. Rather than simple combination of two different chemotherapeutics, the CYC also increased the intracellular DOX accumulation by decreasing the expression of P-glycoprotein (P-gp), which could thus reverse the DOX resistance. Tumor-targeting property of nanoparticles was the prerequisite for its further application. Interestingly, retention of fluorescently-labeled particles in vivo indicated that the dual-drug-loaded BSA NPs could not only target the primary tumors, but also target the metastatic lymph nodes, which would simultaneously inhibit the tumor growth and distant metastasis. Taken together, this study provides a promising strategy for co-delivery of drugs, tumor and metastatic lymph node targeting, and DOX resistance reversing in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Yong-lin Lu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Ya-bin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Dong-lei Zhu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Jie Liu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Lv Chen
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Shu-jing Liang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Chun-yan Dong
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| |
Collapse
|
19
|
Wu Z, Koh B, Lawrence LM, Kanamala M, Pool B, Svirskis D, Dalbeth N, Astin JW, Crosier KE, Crosier PS, Hall CJ. Liposome-Mediated Drug Delivery in Larval Zebrafish to Manipulate Macrophage Function. Zebrafish 2019; 16:171-181. [PMID: 30724716 DOI: 10.1089/zeb.2018.1681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chemical interventions are regularly used to examine and manipulate macrophage function in larval zebrafish. Given chemicals are typically administered by simple immersion or injection, it is not possible to resolve whether their impact on macrophage function is direct or indirect. Liposomes provide an attractive strategy to target drugs to specific cellular compartments, including macrophages. As an example, injecting liposomal clodronate into animal models, including zebrafish, is routinely used to deliver toxic levels of clodronate specifically to macrophages for targeted cell ablation. Here we show that liposomes can also target the delivery of drugs to zebrafish macrophages to selectively manipulate their function. We utilized the drugs etomoxir (a fatty acid oxidation inhibitor) and MitoTEMPO (a scavenger of mitochondrial reactive oxygen species [mROS]), that we have previously shown, through free drug delivery, suppress monosodium urate (MSU) crystal-driven macrophage activation. We generated poloxamer 188 modified liposomes that were readily phagocytosed by macrophages, but not by neutrophils. Loading these liposomes with etomoxir or MitoTEMPO and injecting into larvae suppressed macrophage activation in response to MSU crystals, as evidenced by proinflammatory cytokine expression and macrophage-driven neutrophil recruitment. This work reveals the utility of packaging drugs into liposomes as a strategy to selectively manipulate macrophage function.
Collapse
Affiliation(s)
- Zimei Wu
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Koh
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa M Lawrence
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manju Kanamala
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bregina Pool
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- 1 School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- 3 Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan W Astin
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn E Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Philip S Crosier
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Mao C, Li F, Zhao Y, Debinski W, Ming X. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment. Am J Cancer Res 2018; 8:6274-6290. [PMID: 30613297 PMCID: PMC6299702 DOI: 10.7150/thno.29580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer nanomedicines only modestly improve the overall survival of patients because their anticancer activity is limited by biological barriers posed by the tumor microenvironment. Currently, all the drugs in FDA-approved cancer nanomedicines are substrates for P-glycoprotein (Pgp), and thus, Pgp-mediated multidrug resistance (MDR) remains a hurdle for cancer nanomedicines. Methods: In this study, Pgp-targeted photodynamic therapy (PDT) was developed to enhance the anticancer efficacy of nanomedicines by depleting MDR cancer cells as well as enhancing tumor penetration of nanomedicines. We first examined the Pgp specificity of our targeted PDT approach, and then tested combination therapy of PDT with Doxil in mixed tumor models of MDR cancer cells and stromal cells, mimicking human heterogeneous tumors. Results: In vitro studies showed that the antibody-photosensitizer conjugates produced Pgp-specific cytotoxicity towards MDR cancer cells upon irradiation with a near-infrared light. The studies with a co-culture model of MDR cancer cells and stromal cells revealed synergistic effects in the combination therapy of PDT with Doxil. Using a mouse model of mixed tumors containing MDR cancer cells and stroma cells, we observed markedly enhanced tumor delivery of Doxil after PDT in vivo. We further examined the effects of the two modalities on individual cell populations and their synergism using an in vivo dual substrate bioluminescence assay. The results indicated that Pgp-targeted PDT specifically depleted MDR cancer cells and further enhanced Doxil's actions on both MDR cancer cells and stromal cells. Conclusion: We conclude that our targeted PDT approach markedly enhances anticancer actions of nanomedicines by depleting MDR cancer cells and increasing their tumor penetration, and thereby, may provide an effective approach to facilitate translation of cancer nanomedicines.
Collapse
|
21
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Abstract
Doxorubicin (DOX), also known as adriamycin, is a DNA topoisomerase II inhibitor and belongs to the family of anthracycline anticancer drugs. DOX is used for the treatment of a wide variety of cancer types. However, resistance among cancer cells has emerged as a major barrier to effective treatment using DOX. Currently, the role of autophagy in cancer resistance to DOX and the mechanisms involved have become one of the areas of intense investigation. More and more preclinical data are being obtained on reversing DOX resistance through modulation of autophagy as one of the promising therapeutic strategies. This review summarizes the recent advances in autophagy-targeting therapies that overcome DOX resistance from in-vitro studies to animal models for exploration of novel delivery systems. In-depth understanding of the mechanisms of autophagy regulation in relation to DOX resistance and development of molecularly targeted autophagy-modulating agents will provide a promising therapeutic strategy for overcoming DOX resistance in cancer treatment.
Collapse
|
23
|
Zhou L, Wang H, Li Y. Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics 2018; 8:1059-1074. [PMID: 29463999 PMCID: PMC5817110 DOI: 10.7150/thno.22679] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is still a main option for cancer therapy, but its efficacy is often unsatisfying due to multidrug resistance (MDR). The tumor microenvironment is considered a dominant factor causing MDR. Stimuli-responsive nanomedicines exhibit many superiorities for reversal of MDR. As smart systems, stimuli-responsive nanomedicines are desirable for achieving site-specific accumulation and triggered drug release in response to slight changes in physicochemical properties in pathological conditions or to exogenous stimuli. In this review, we highlight the current progress of various nanomedicines with different stimuli-responsive capabilities for overcoming MDR. The materials, design, construction as well as efficacy in overcoming MDR of these nanomedicines are discussed. Eventually, we look forward to forthcoming intelligent nanoparticle systems with new mechanisms to deliver drugs for practical applications in conquering cancer MDR.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
24
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
25
|
Wang F, Chen J, Zhang Z, Yi J, Yuan M, Wang M, Zhang N, Qiu X, Wei H, Wang L. Differences of basic and induced autophagic activity between K562 and K562/ADM cells. Intractable Rare Dis Res 2017; 6:281-290. [PMID: 29259857 PMCID: PMC5735282 DOI: 10.5582/irdr.2017.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with acute myeloid leukemia (AML) often have a poor prognosis due to drug resistance, which is regarded as a tough problem during the period of clinical therapeutics. It has been reported that autophagy, an important event in various cellular processes, plays a crucial role in mediating drug-resistance to cancer cells. Our study attempts to comparatively investigate the differences of basic and induced autophagic activity between drug-sensitive and multidrug-resistant AML cells. The level of basic autophagy in K562/ADM cells was higher than that in K562 cells, which could be characterized by more cytosolic contents-packaged autophagic vacuoles in K562/ADM cells when compared to that in K562 cells. The observation of MDC staining showed that the fluorescent intensity of autophagosomes in K562/ADM cells was stronger than that in K562 cells. The expression of Beclin1 and the ratio of LC3-II to LC3-I were distinctly higher in K562/ADM cells, however, P62 protein was relatively lower in K562/ADM cells. Furthermore, we found that nutrient depletion could induce autophagic activity of both cell lines. However, autophagic activity of K562/ADM cells was always maintained at a higher level in contrast with K562 cells. ADM (Adriamycin) was also capable of inducing autophagic activity of K562 and K562/ADM cells, but the autophagic alteration in K562 cells appeared earlier. Taken together, our findings suggest that autophagy exerts an important effect on formation and maintenance of drug-resistance in AML cells.
Collapse
Affiliation(s)
- Feifei Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Minmin Yuan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mingyan Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Na Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
- Dr. Hulai Wei, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000 Gansu Province, China. E-mail:
| | - Ling Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Address correspondence to: Dr. Ling Wang, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai 200011, China. E-mail:
| |
Collapse
|
26
|
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12:5879-5892. [PMID: 28860754 PMCID: PMC5566389 DOI: 10.2147/ijn.s123437] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignant disease in women worldwide, but the current drug therapy is far from optimal as indicated by the high death rate of breast cancer patients. Nanomedicine is a promising alternative for breast cancer treatment. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for breast cancer adjuvant therapy with favorable clinical outcomes. However, these products were originally designed for generic anticancer purpose and not specifically for breast cancer treatment. With better understanding of the molecular biology of breast cancer, a number of novel promising nanotherapeutic strategies and devices have been developed in recent years. In this review, we will first give an overview of the current breast cancer treatment and the updated status of nanomedicine use in clinical setting, then discuss the latest important trends in designing breast cancer nanomedicine, including passive and active cancer cell targeting, breast cancer stem cell targeting, tumor microenvironment-based nanotherapy and combination nanotherapy of drug-resistant breast cancer. Researchers may get insight from these strategies to design and develop nanomedicine that is more tailored for breast cancer to achieve further improvements in cancer specificity, antitumorigenic effect, antimetastasis effect and drug resistance reversal effect.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Mengjie Si
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ho-Lun Wong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
27
|
Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 2017; 8:e2943. [PMID: 28726781 PMCID: PMC5550872 DOI: 10.1038/cddis.2017.327] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors with a high mortality rate owing to tumor relapse after anticancer therapies. It is widely accepted that a rare tumor cell population, known as cancer stem cells (CSC), is responsible for tumor progression and relapse; intriguingly, these cells are able to survive nutrient starvation (such as in vitro culture in the absence of glucose) and chemotherapy treatment. Recent data also indicated that chemotherapy resistance is associated with autophagy activation. We thus decided to investigate both in vitro and in vivo the autophagic activity and the effects of the perturbation of this pathway in CSC isolated from EOC ascitic effusions. Ovarian CSC, identified according to their CD44/CD117 co-expression, presented a higher basal autophagy compared with the non-stem counterpart. Inhibition of this pathway, by in vitro chloroquine treatment or CRISPR/Cas9 ATG5 knockout, impaired canonical CSC properties, such as viability, the ability to form spheroidal structures in vitro, and in vivo tumorigenic potential. In addition, autophagy inhibition showed a synergistic effect with carboplatin administration on both in vitro CSC properties and in vivo tumorigenic activity. On the whole, these results indicate that the autophagy process has a key role in CSC maintenance; inhibition of this pathway in combination with other chemotherapeutic approaches could represent a novel effective strategy to overcome drug resistance and tumor recurrence.
Collapse
|
28
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. CHINESE JOURNAL OF CANCER 2017. [PMID: 28646911 PMCID: PMC5482965 DOI: 10.1186/s40880-017-0219-2] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) occurs frequently after long-term chemotherapy, resulting in refractory cancer and tumor recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self-degradative system, universally arises during the treatment of sensitive and MDR cancer. Autophagy can be a double-edged sword for MDR tumors: it participates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apoptosis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in MDR tumors, including the variable role of autophagy in MDR cancer cells.
Collapse
Affiliation(s)
- Ying-Jie Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Yu-He Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Chen-Ran Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China.
| | - Zhe-Sheng Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China. .,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
29
|
Jiang G, Dong S, Yu M, Han X, Zheng C, Zhu X, Tong X. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells. Oncol Lett 2016; 13:857-866. [PMID: 28356970 DOI: 10.3892/ol.2016.5471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced.
Collapse
Affiliation(s)
- Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China; Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chao Zheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaoguang Zhu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
30
|
Li Y, Sun Y, Jing L, Wang J, Yan Y, Feng Y, Zhang Y, Liu Z, Ma L, Diao A. Lysosome Inhibitors Enhance the Chemotherapeutic Activity of Doxorubicin in HepG2 Cells. Chemotherapy 2016; 62:85-93. [PMID: 27764836 DOI: 10.1159/000448802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022]
Abstract
The lysosome inhibitors bafilomycin A1 and chloroquine have both lysosomotropic properties and autophagy inhibition ability, and are promising clinical agents to be used in combination with anticancer drugs. In order to investigate this combination effect, HepG2 cells were treated with bafilomycin A1, chloroquine, or/and doxorubicin, and their proliferative ability, induction of apoptosis, and the changes of lysosomal membrane permeabilization and mitochondrial membrane potential were studied. The results demonstrate that treatment with bafilomycin A1 or chloroquine alone at a relatively low concentration promotes the inhibitory effect of doxorubicin on cell growth and apoptosis. Further studies reveal that bafilomycin A1 and chloroquine promote lysosomal membrane permeabilization and the reduction of mitochondrial membrane potential induced by doxorubicin. Our findings suggest that bafilomycin A1 and chloroquine potentiate the anticancer effect of doxorubicin in hepatic cancer cells and that supplementation of conventional chemotherapy with lysosome inhibitors may provide a more efficient anticancer therapy.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|