1
|
Jin Y, Li Z, Qi L, Zhang L, Gao D, Liu H, Cao Q, Tian C, Xia Q, Wang Y. The autocrine action of salidroside on osteoclast during osteoclastogenesis via hypoxia-inducible factor-1 α pathway. Hum Exp Toxicol 2024; 43:9603271241269028. [PMID: 39197164 DOI: 10.1177/09603271241269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND OBJECTIVE The objective of this study was to investigate the potential of salidroside (SAL) (a major active compound in Rhodiola rosea L.) in regulating osteoclast differentiation and function by modulating the HIF-1α pathway and its downstream target genes. METHODS The expression of HIF-1α and its downstream target genes was examined at both mRNA and protein levels in osteoclasts treated with SAL. Immunofluorescence analysis was performed to assess the nuclear translocation and transcriptional activity of HIF-1α in response to SAL. MTT, flow cytometry, qPCR, TRAP staining and bone resorption assays were used to evaluate the potential effect of salidroside on osteoclasts. RESULTS SAL enhanced the expression of HIF-1α and its downstream target genes in osteoclasts. Immunofluorescence analysis confirmed the facilitation of HIF-1α nuclear translocation and transcriptional activity by SAL. In addition, SAL enhanced osteoclast viability, differentiation and bone resorption activity in an autocrine manner through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways. CONCLUSION SAL promotes osteoclast proliferation, differentiation and bone resorption through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhengyang Li
- Department of Orthodontic, Tianjin Stomatological Hospital, Tianjin, China
| | - Lin Qi
- Department of Pharmacy, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Lingling Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dandan Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingwen Cao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenchen Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Xia
- Department of Orthopaedics, Tianjin First Central Hoapital, Tianjin, China
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Wang D, Wu X, Zhou X, Zhou J. Key genes and regulatory networks of hypoxic preconditioning on osteoblasts. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2169362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang hospital, Capital Medical University, Chaoyang District, Beijing, People’s Republic of China
| | - Xueqiang Wu
- Department of Orthopedics, Beijing Chaoyang hospital, Capital Medical University, Chaoyang District, Beijing, People’s Republic of China
- Department of Hand Surgery, Tangshan Second Hospital, Tangshan, People’s Republic of China
| | - Xiaobin Zhou
- Third Department of Traumatology, The Third Hospital of Shijiazhuang, Shijiazhuang, People’s Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang hospital, Capital Medical University, Chaoyang District, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Qu N, Chen L, Liang S, Wei M, Sun L, He Q, Xue J, Wang M, Shi K, Jiang H, Liu H. Roxadustat Attenuates the Disruption of Epithelial Tight Junction in Caco2 Cells and a Rat Model of CKD Through MicroRNA-223. Front Med (Lausanne) 2022; 9:850966. [PMID: 35492370 PMCID: PMC9043115 DOI: 10.3389/fmed.2022.850966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction Increasing evidence supports the idea that the disruption of epithelial tight junction proteins (TJPs) caused by accumulation of uremia toxins, such as homocysteine (Hcy), is one of the most important mechanisms underlying the damage of intestinal barrier function (IBF) in chronic kidney disease (CKD). Since the decrease of hypoxia inducible factor-1α (HIF-1α) is reported to be involved in Hcy-induced cell injury, and the upregulation of microRNA-223 (miR-223) plays a vital protective role in the impairment of IBF in the experimental colitis, we investigated the effect of HIF-1α stabilizer roxadustat on the disruption of TJPs induced by Hcy and CKD and the underlying mechanism. Methods Chronic kidney disease was induced in rats via 5/6 nephrectomy. In a series of experiments, the rats were treated orally with roxadustat of different doses. The expression of tight junction proteins, HIF-1α, and miR-223 was analyzed in different groups by western blotting analysis, RT-qPCR techniques and immunofluorescence. A series of experiments with cultured Caco2 cells was performed. Results The results showed that the expression of TJPs (occludin, claudin-1, and ZO-1) decreased significantly, accompanied by the reduction of HIF-1α and miR-223 in Hcy-treated Caco2 cells and colonic mucosa of uremic rats. The reduction of HIF-1α and miR-223 was reversed by roxadustat and the decrease of TJPs expression was attenuated in both Caco2 cells induced by Hcy and colon tissue of CKD rats. Furthermore, transfection with miR-223 mimics increased the expression of TJPs, while transfection with miR-223 inhibitor decreased their expression in Caco2 cells. MiR-223 inhibitor applied before roxadustat treatment partly diminished the effect of roxadustat on TJPs expression in Caco2 cells. Conclusion These results indicated that roxadustat attenuated the disruption of epithelial TJPs induced by Hcy in Caco2 cells and the damage of colonic epithelium in CKD rats through the upregulation of miR-223 induced by HIF-1α. A novel insight into the IBF dysfunction in CKD was provided, and it suggests a potential therapeutic use of roxadustat for the IBF dysfunction besides anemia in CKD.
Collapse
Affiliation(s)
- Ning Qu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Liang
- Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingshuang Sun
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quan He
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhong Xue
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kehui Shi
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Liu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Sarkar S, Peng CC, Tung YC. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. PLoS One 2020; 15:e0240833. [PMID: 33175874 PMCID: PMC7657494 DOI: 10.1371/journal.pone.0240833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a major cytokine in tumor biology affecting tumor survival, aggressiveness and pro-angiogenetic activities. In addition, cellular stresses often result in aggressive pro-angiogenetic behavior in tumors. For in vitro study, conventional monolayer cell culture has been broadly exploited; however, it often provides limited information due to its different microenvironment from that in vivo. Recently, three-dimensional (3D) cell spheroid culture provides in vivo-like microenvironments to study tumor biology and their survival mechanisms with better predictive power. In this work, vascular endothelial growth factor of type A (VEGF-A) secretion from osteosarcoma (MG-63) cells cultured using monolayer and 3D spheroid models under two stress conditions: nutrient deficiency (reduced serum culture) and hypoxia-inducible factor (HIF) inhibition (HIF inhibitor, YC-1) are characterized and systematically compared. In order to obtain ample sample size for consistent characterization of cellular responses from cancer spheroids under the stresses and compare the responses to those from the conventional monolayer model, a microfluidic spheroid formation and culture device is utilized in the experiments. In the analysis, cell viability is estimated from captured images, and quantification of VEGF-A secreted from the cells is achieved using enzyme-linked immunosorbent assay (ELISA). The experimental results show that the viabilities decrease when the cells face higher stress levels in both monolayer and 3D spheroid culture models; however, the VEGF-A secretion profiles between the cell culture models are different. The VEGF-A secretion decreases when the cells face higher stress conditions in the monolayer cell culture. In contrast, for the 3D spheroid culture, the VEGF-A concentration decreases for low stress levels but increases while the stress level is high. The VEGF-A regulation in the 3D models mimics in vivo cases of tumor survival and can provide insightful information to investigate tumor angiogenesis in vitro. The approach developed in this paper provides an efficient method to quantitatively and statistically study tumor growth kinetics and stress responses from highly uniform samples and it can also be applied to compare the underlying biomolecular mechanisms in monolayer and 3D spheroid culture models to elucidate the effects of microenvironments on cellular response in cancer research.
Collapse
Affiliation(s)
- Sreerupa Sarkar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program, Academia Sinica, Taipei, Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program, Academia Sinica, Taipei, Taiwan
- College of Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Wang F, Zhu J, Zheng J, Duan W, Zhou Z. miR‑210 enhances mesenchymal stem cell‑modulated neural precursor cell migration. Mol Med Rep 2020; 21:2405-2414. [PMID: 32323777 PMCID: PMC7185297 DOI: 10.3892/mmr.2020.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
The migration of endogenous neural stem cells and neural precursor cells (NPCs) to sites of injury is essential for neuroregeneration following hypoxic‑ischemic events. Bone marrow‑derived mesenchymal stem cells (BMSCs) are a potential therapeutic source of cells following central nervous system damage; however, few studies have investigated the effects of BMSCs on cell migration. Thus, in the present study, the effects of BMSCs on NPC migration were investigated. In the present study, BMSCs and NPCs were isolated and cultured from mice. The effects of BMSCs on the migration of NPCs were analyzed using a Transwell cell migration assay. BMSCs were transfected with microRNA‑210 (miR‑210) mimics and inhibitors to examine the effects of the respective upregulation and downregulation of miR‑210 in BMSCs on the migration of NPCs. Then, miR‑210 expression in BMSCs were quantified and the expression levels of vascular endothelial growth factor‑C (VEGF‑C), brain derived neurotrophic factor (BDNF) and chemokine C‑C motif ligand 3 (CCL3) in the supernatant under hypoxic conditions were investigated via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and ELISA. Subsequently, the expression of VEGF‑C, BDNF and CCL3 in BMSCs overexpressing miR‑210 or BMSCs suppressing miR‑210 was examined by RT‑qPCR and western blot analyses. BMSCs promoted the migration of NPC, particularly when pre‑cultured with BMSCs for 24 h and co‑cultured with NPCs for 24 h; the miR‑210 expression levels increased under hypoxic conditions. Additionally, the migration of NPCs was also increased when the BMSCs overexpressed miR‑210 compared with the BMSCs transfected with a negative control miR and BMSCs with downregulated miR‑210 levels. The expression levels of VEGF‑C increased in the BMSCs that overexpressed miR‑210 and were decreased in BMSCs transfected with a miR‑210 inhibitor. The results of the present study indicated that BMSCs promote the migration of NPCs. Overexpression of miR‑210 in BMSCs enhanced NPC migration and may be associated with increases in VEGF‑C expression levels.
Collapse
Affiliation(s)
- Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, P.R. China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
6
|
Qiao J, Huang J, Zhou M, Cao G, Shen H. Inhibition of HIF-1α restrains fracture healing via regulation of autophagy in a rat model. Exp Ther Med 2018; 17:1884-1890. [PMID: 30783464 DOI: 10.3892/etm.2018.7115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that bone fracture is associated with the activation of autophagy, and upregulation of autophagy could promote fracture healing. Previous study by our group demonstrated that activating the HIF-1α pathway via administration of cobalt (II) chloride (CoCl2) could promote fracture healing in vivo. However, the role of hypoxia-inducible factor-1α (HIF-1α) in autophagy remains unknown. In the current study, rats were divided into two groups following tibial fracture and treated with echinomycin or dimethyl sulfoxide (DMSO). Rats were sacrificed at 7, 14, 28 and 42 days after fracture. The evaluation of fracture healing was performed by micro-computed tomography. In addition, the effects of echinomycin on microtubule-associated protein 1 light chain 3 (LC3 II), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), Unc-51-like autophagy activating kinase 1 (ULK1) and P62 were detected at the mRNA and protein levels by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The results demonstrated that the expression of LC3 II was markedly decreased following systemic administration of echinomycin (0.05 mg/kg every other day for 42 days, intraperitoneally). Furthermore, the levels of Runx2, ALP and ULK1 were decreased, while those of P62 were increased, at the mRNA and protein levels in rats treated with echinomycin in vivo. In summary, the current study suggested that HIF-1α may serve an important role in fracture healing via the downregulation of autophagy.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jiang Huang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Meng Zhou
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Huiliang Shen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
7
|
Hou Q, Huang Y, Liu Y, Luo Y, Wang B, Deng R, Zhang S, Liu F, Chen D. Profiling the miRNA-mRNA-lncRNA interaction network in MSC osteoblast differentiation induced by (+)-cholesten-3-one. BMC Genomics 2018; 19:783. [PMID: 30373531 PMCID: PMC6206902 DOI: 10.1186/s12864-018-5155-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Our previous study showed that (+)-cholesten-3-one (CN) has the potential to induce the osteoblastic differentiation of mesenchymal stem cells (MSCs). However, the roles of CN in targeting miRNA-mRNA-lncRNA interactions to regulate osteoblast differentiation remain poorly understood. Results A total of 77 miRNAs (36 upregulated and 41 downregulated) and 295 lncRNAs (281 upregulated and 14 downregulated) were significantly differentially expressed during CN-induced MSC osteogenic differentiation. Bioinformatic analysis identified that several pathways may play vital roles in MSC osteogenic differentiation, such as the vitamin D receptor signalling, TNF signalling, PI3K-Akt signalling, calcium signalling, and mineral absorption pathways. Further bioinformatic analysis revealed 16 core genes, including 6 mRNAs (Vdr, Mgp, Fabp3, Fst, Cd38, and Col1a1), 5 miRNAs (miR-483, miR-298, miR-361, miR-92b and miR-155) and 5 lncRNAs (NR_046246.1, NR_046239.1, XR_086062.1, XR_145872.1 and XR_146737.1), that may play important roles in regulating the CN-induced osteogenic differentiation of MSCs. Verified by the luciferase reporter, AR-S, qRT-PCR and western blot assays, we identified one miRNA (miR-298) that may enhance the osteogenic differentiation potential of MSCs via the vitamin D receptor signalling pathway. Conclusions This study revealed the global expression profile of miRNAs and lncRNAs involved in the Chinese medicine active ingredient CN-induced osteoblast differentiation of MSCs for the first time and provided a foundation for future investigations of miRNA-mRNA-lncRNA interaction networks to completely illuminate the regulatory role of CN in MSC osteoblast differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5155-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuke Hou
- Department of Anatomy, The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yongquan Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yamei Liu
- Department of Diagnosis of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yiwen Luo
- Department of Trauma, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Bin Wang
- Department of Trauma, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Rudong Deng
- Department of Anatomy, The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Saixia Zhang
- Department of Anatomy, The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Fengbin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Dongfeng Chen
- Department of Anatomy, The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Sarkar S, Peng CC, Kuo CW, Chueh DY, Wu HM, Liu YH, Chen P, Tung YC. Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy. RSC Adv 2018; 8:30320-30329. [PMID: 35546825 PMCID: PMC9085395 DOI: 10.1039/c8ra05505j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional cell spheroid culture using microfluidic devices provides a convenient in vitro model for studying tumour spheroid structures and internal microenvironments. Recent studies suggest that oxygen deprived zones inside solid tumors are responsible for stimulating local cytokines and endothelial vasculature proliferation during angiogenesis. In this work, we develop an integrated approach combining microfluidic devices and multi-photon laser scanning microscopy (MPLSM) to study variations in oxygen tension within live spheroids of human osteosarcoma cells. Uniform shaped, size-controlled spheroids are grown and then harvested using a polydimethylsiloxane (PDMS) based microfluidic device. Fluorescence live imaging of the harvested spheroids is performed using MPLSM and a commercially available oxygen sensitive dye, Image-iT Red, to observe the oxygen tension variation within the spheroids and those co-cultured with monolayers of human umbilical vein endothelial cells (HUVECs). Oxygen tension variations are observed within the spheroids with diameters ranging from 90 ± 10 μm to 140 ± 10 μm. The fluorescence images show that the low-oxygenated cores diminish when spheroids are co-cultured with HUVEC monolayers for 6 hours to 8 hours. In the experiments, spheroids subjected to HUVEC conditioned medium treatment and with a cell adherent substrate are also measured and analyzed to study their significance on oxygen tension within the spheroids. The results show that the oxygenation within the spheroids is improved when the spheroids are cultured under those conditions. Our work presents an efficient method to study oxygen tension variation within live tumor spheroids under the influence of endothelial cells and conditioned medium. The method can be exploited for further investigation of tumor oxygen microenvironments during angiogenesis.
Collapse
Affiliation(s)
- Sreerupa Sarkar
- Department of Engineering and System Science, National Tsing Hua University Hsinchu 30013 Taiwan
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yuan-Hsuan Liu
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica Taipei 11529 Taiwan
- Taiwan International Graduate Program (TIGP), Nano Science and Technology Program Taiwan
- College of Engineering, Chang Gung University Taoyuan 33302 Taiwan
| |
Collapse
|
9
|
Li Q, Liu R, Zhao J, Lu Q. N-methyl pyrrolidone (NMP) ameliorates the hypoxia-reduced osteoblast differentiation via inhibiting the NF-κB signaling. J Toxicol Sci 2017; 41:701-9. [PMID: 27665779 DOI: 10.2131/jts.41.701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ischemic-hypoxic condition for local osteoblasts and bone mesenchymal stem cells during bone fracture inhibits bone repairing. N-methyl pyrrolidone (NMP) has been approved as a safe and biologically inactive small chemical molecule, and might be useful for bone fracture repairing. In the present study, we investigated the effect of NMP on the hypoxia-reduced cellular viability and the expression of differentiation-associated markers, such as bone morphogenetic protein 2 (BMP-2), propeptide of type I procollagen I (PINP), alkaline phosphatase (ALP) or runt-related transcription factor 2 (Runx2) in the osteoblasts, and then we examined the molecular mechanism underlining such effect in the human osteoblastic hFOB 1.19 cells. Our results demonstrated that NMP significantly blocked the hypoxia-induced cell viability reduction and inhibited the hypoxia-caused expression downregulation of BMP-2, PINP, ALP and Runx2 in hFOB 1.19 cells. Then we confirmed the involvement of nuclear factor κB (NF-κB) pathway in the regulation by NMP on the hypoxia-mediated the reduction of osteoblast differentiation. The upregulated expression and transcriptional activity of NF-κB, while the downregulated inhibitory κB expression by the hypoxia treatment was reversed by the treatment with 10 mM NMP. In conclusion, our study found a protective role of NMP in osteoblast differentiation in response to hypoxia, and such protection was through inhibiting the NF-κB signaling. This suggests that NMP might be a protective agent in bone fracture repairing.
Collapse
Affiliation(s)
- Qiang Li
- Department of Orthopedics, the Affiliated Hospital of Inner Mongolia Medical University, China
| | | | | | | |
Collapse
|
10
|
Wang G, Wang J, Sun D, Xin J, Wang L, Huang D, Wu W, Xian CJ. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis. Med Sci Monit 2016; 22:2962-71. [PMID: 27550548 PMCID: PMC5006713 DOI: 10.12659/msm.899485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. Material/Methods The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. Results While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. Conclusions Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss.
Collapse
Affiliation(s)
- Guixin Wang
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Jia Wang
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Dawei Sun
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guanghzou, China (mainland)
| | - Jingyi Xin
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Dong Huang
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guanghzou, China (mainland)
| | - Weichi Wu
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China (mainland)
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
11
|
Wu D, Chen B, Cui F, He X, Wang W, Wang M. Hypoxia-induced microRNA-301b regulates apoptosis by targeting Bim in lung cancer. Cell Prolif 2016; 49:476-83. [PMID: 27352910 PMCID: PMC6495957 DOI: 10.1111/cpr.12264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Worldwide, lung cancer accounts for the majority of cancer-related deaths. Aberrant expression of miRNAs has increasingly been reported to be associated with tumour progression. This study aimed to explore the role of miR-301b in regulating apoptosis in lung cancer. MATERIALS AND METHODS Expression of miR-301b was assessed by real-time PCR in cell lines, human patient tissues and cells treated under hypoxia and DMOG. Scramble siRNA, miR-301b inhibitor and miR-301b mimics were transfected into lung cancer cells to determine their effects on apoptosis. Additionally, a mouse xenograft model was used to explore functions of miR-301b on apoptosis, in vivo. Finally, relationships between Bim and miR-301b levels were explored by luciferase reporter assay and Western blotting. RESULTS We found that miR-301b was highly expressed in lung cancer tissues and cell lines. Expression of miR-301b was induced by hypoxia, and miR-301b suppressed expression of Bim by targeting its 3'UTR. Functionally, ectopic expression of miR-301b enhanced cell population growth, reduced apoptosis and reduced sensitivity of cells to chemotherapy. In the xenograft model, overexpression of miR-301b promoted tumour growth. Additionally, miR-301b and Bim expression were inversely correlated in clinical lung cancer samples. CONCLUSIONS This study provides new insights into the function of miRNA-301b in lung cancer and suggests that miRNA-301b could be a potential molecular target for chemotherapy.
Collapse
Affiliation(s)
- Duoguang Wu
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Baishen Chen
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Fei Cui
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaotian He
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wenjian Wang
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Minghui Wang
- Department of OncologyNanfangHospital Southern Medical UniversityGuangzhouChina
- Department of Thoracic SurgeryThe Sun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Qiu Y, Chen Y, Zeng T, Guo W, Zhou W, Yang X. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol Biol Rep 2016; 43:183-93. [DOI: 10.1007/s11033-015-3936-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023]
|