1
|
Song R, Zhang J, Zhu M, Lin L, Wei W, Wei D. Computer-aided rational design strategy based on protein surface charge to improve the thermal stability of a novel esterase from Geobacillus jurassicus. Biotechnol Lett 2024; 46:443-458. [PMID: 38523202 DOI: 10.1007/s10529-024-03473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 02/10/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases. RESULTS Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (DsCα-Cα) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T1/2) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min). CONCLUSION Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.
Collapse
Affiliation(s)
- Runfei Song
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Mengyu Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Maati J, Prazeres DM, Grąz M, Wiater A, Jarosz-Wilkołazka A, Smaali I. Heteroxylan hydrolysis by a recombinant cellulase-free GH10 xylanase from the alkaliphilic bacterium Halalkalibacterium halodurans C-125. Arch Microbiol 2024; 206:261. [PMID: 38753095 DOI: 10.1007/s00203-024-03982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
The search for affordable enzymes with exceptional characteristics is fundamental to overcoming industrial and environmental constraints. In this study, a recombinant GH10 xylanase (Xyn10-HB) from the extremely alkaliphilic bacterium Halalkalibacterium halodurans C-125 cultivated at pH 10 was cloned and expressed in E. coli BL21(DE3). Removal of the signal peptide improved the expression, and an overall activity of 8 U/mL was obtained in the cell-free supernatant. The molecular weight of purified Xyn10-HB was estimated to be 42.6 kDa by SDS-PAGE. The enzyme was active across a wide pH range (5-10) with optimal activity recorded at pH 8.5 and 60 °C. It also presented good stability with a half-life of 3 h under these conditions. Substrate specificity studies showed that Xyn10-HB is a cellulase-free enzyme that conventionally hydrolyse birchwood and oat spelts xylans (Apparent Km of 0.46 mg/mL and 0.54 mg/mL, respectively). HPLC analysis showed that both xylans hydrolysis produced xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from 2 to 9. The conversion yield was 77% after 24 h with xylobiose and xylotriose as the main end-reaction products. When assayed on alkali-extracted wheat straw heteroxylan, the Xyn10-HB produced active XOS with antioxidant activity determined by the DPPH radical scavenging method (IC50 of 0.54 mg/mL after 4 h). Owing to its various characteristics, Xyn10-HB xylanase is a promising candidate for multiple biotechnological applications.
Collapse
Affiliation(s)
- Jihene Maati
- University of Carthage, Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), INSAT-BP 676, 1080, Tunis Cedex, Tunisia
| | - Duarte Miguel Prazeres
- Institute for Bioengineering and Biosciences-iBB, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Institute for Health and Bioeconomy-li4HB, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Issam Smaali
- University of Carthage, Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), INSAT-BP 676, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
3
|
Morimoto K, Juma KM, Yamagata M, Takita T, Kojima K, Suzuki K, Yanagihara I, Fujiwara S, Yasukawa K. Increase in the solubility of uvsY using a site saturation mutagenesis library for application in a lyophilized reagent for recombinase polymerase amplification. Mol Biol Rep 2024; 51:367. [PMID: 38411701 PMCID: PMC10899321 DOI: 10.1007/s11033-024-09367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Recombinase uvsY from bacteriophage T4, along with uvsX, is a key enzyme for recombinase polymerase amplification (RPA), which is used to amplify a target DNA sequence at a constant temperature. uvsY, though essential, poses solubility challenges, complicating the lyophilization of RPA reagents. This study aimed to enhance uvsY solubility. METHODS Our hypothesis centered on the C-terminal region of uvsY influencing solubility. To test this, we generated a site-saturation mutagenesis library for amino acid residues Lys91-Glu134 of the N-terminal (His)6-tagged uvsY. RESULTS Screening 480 clones identified A116H as the variant with superior solubility. Lyophilized RPA reagents featuring the uvsY variant A116H demonstrated enhanced performance compared to those with wild-type uvsY. CONCLUSIONS The uvsY variant A116H emerges as an appealing choice for RPA applications, offering improved solubility and heightened lyophilization feasibility.
Collapse
Affiliation(s)
- Kenta Morimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kevin Maafu Juma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Masaya Yamagata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kojima
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, 565-0871, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi-Shi, Osaka, 594-1101, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Notin P, Rollins N, Gal Y, Sander C, Marks D. Machine learning for functional protein design. Nat Biotechnol 2024; 42:216-228. [PMID: 38361074 DOI: 10.1038/s41587-024-02127-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
Recent breakthroughs in AI coupled with the rapid accumulation of protein sequence and structure data have radically transformed computational protein design. New methods promise to escape the constraints of natural and laboratory evolution, accelerating the generation of proteins for applications in biotechnology and medicine. To make sense of the exploding diversity of machine learning approaches, we introduce a unifying framework that classifies models on the basis of their use of three core data modalities: sequences, structures and functional labels. We discuss the new capabilities and outstanding challenges for the practical design of enzymes, antibodies, vaccines, nanomachines and more. We then highlight trends shaping the future of this field, from large-scale assays to more robust benchmarks, multimodal foundation models, enhanced sampling strategies and laboratory automation.
Collapse
Affiliation(s)
- Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | - Yarin Gal
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debora Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
5
|
Li L, Ding L, Shao Y, Sun S, Wang M, Xiang J, Zhou J, Wu G, Song Z, Xin Z. Enhancing the Hydrolysis and Acyl Transfer Activity of Carboxylesterase DLFae4 by a Combinational Mutagenesis and In-Silico Method. Foods 2023; 12:1169. [PMID: 36981096 PMCID: PMC10048530 DOI: 10.3390/foods12061169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
In the present study, a feruloyl esterase DLFae4 identified in our previous research was modified by error-prone PCR and site-directed saturation mutation to enhance the catalytic efficiency and acyltransferase activity further. Five mutants with 6.9-118.9% enhanced catalytic activity toward methyl ferulate (MFA) were characterized under the optimum conditions. Double variant DLFae4-m5 exhibited the highest hydrolytic activity (270.97 U/mg), the Km value decreased by 83.91%, and the Kcat/Km value increased by 6.08-fold toward MFA. Molecular docking indicated that a complex hydrogen bond network in DLFae4-m5 was formed, with four of five bond lengths being shortened compared with DLFae4, which might account for the increase in catalytic activity. Acyl transfer activity assay revealed that the activity of DLFae4 was as high as 1550.796 U/mg and enhanced by 375.49% (5823.172 U/mg) toward 4-nitrophenyl acetate when residue Ala-341 was mutated to glycine (A341G), and the corresponding acyl transfer efficiency was increased by 7.7 times, representing the highest acyltransferase activity to date, and demonstrating that the WGG motif was pivotal for the acyltransferase activity in family VIII carboxylesterases. Further experiments indicated that DLFae4 and variant DLFae4 (A341G) could acylate cyanidin-3-O-glucoside effectively in aqueous solution. Taken together, our study suggested the effectiveness of error-prone PCR and site-directed saturation mutation to increase the specific activity of enzymes and may facilitate the practical application of this critical feruloyl esterase.
Collapse
Affiliation(s)
- Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Xiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Song
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Heterologous expression and characterization of two novel glucanases derived from sheep rumen microbiota. World J Microbiol Biotechnol 2022; 38:87. [DOI: 10.1007/s11274-022-03269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|
8
|
Kuwata K, Suzuki M, Takita T, Yatsunami R, Nakamura S, Yasukawa K. The mutation of Thr315 to Asn of GH10 xylanase XynR increases the alkaliphily but decreases the alkaline resistance. Biosci Biotechnol Biochem 2021; 85:1853-1860. [PMID: 34077498 DOI: 10.1093/bbb/zbab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
XynR is a thermophilic and alkaline GH10 xylanase, identified in the culture broth of alkaliphilic and thermophilic Bacillus sp. strain TAR-1. We previously selected S92E as a thermostable variant from a site saturation mutagenesis library. Here, we attempted to select the alkaliphilic XynR variant from the library and isolated T315N. In the hydrolysis of beechwood xylan, T315N and S92E/T315N exhibited a broader bell-shaped pH-dependent activity than the wild-type (WT) XynR and S92E. The optimal pH values of T315N and S92E/T315N were 6.5-9.5 while those of WT and S92E were 6.5-8.5. On the other hand, T315N and S92E/T315N exhibited a narrower bell-shaped pH dependence of stability: the pHs at which the activity was stable after the incubation at 37 °C for 24 h were 6.0-8.5 for T315N and S92E/T315N, but 6.0-10.0 for WT and S92E. These results indicated that the mutation of Thr315 to Asn increased the alkaliphily but decreased the alkaline resistance.
Collapse
Affiliation(s)
- Kohei Kuwata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Manami Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rie Yatsunami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan.,National Institute of Technology, Numazu College, Ooka, Numazu, Shizuoka, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
9
|
Suzuki M, Takita T, Kuwata K, Nakatani K, Li T, Katano Y, Kojima K, Mizutani K, Mikami B, Yatsunami R, Nakamura S, Yasukawa K. Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp. strain TAR-1 by the mutation of S92 to E. Biosci Biotechnol Biochem 2021; 85:386-390. [PMID: 33604642 DOI: 10.1093/bbb/zbaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 11/12/2022]
Abstract
The mechanism of thermostabilization of GH10 xylanase, XynR, from Bacillus sp. strain TAR-1 by the mutation of S92 to E was investigated. Thermodynamic analysis revealed that thermostabilization was driven by the decrease in entropy change of activation for thermal inactivation. Crystallographic analysis suggested that this mutation suppressed the fluctuation of the amino acid residues at position 92-95.
Collapse
Affiliation(s)
- Manami Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kuwata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kota Nakatani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tongyang Li
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuta Katano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kimihiko Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Rie Yatsunami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.,National Institute of Technology, Numazu College, Ooka, Numazu, Shizuoka 410-8501, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Lai Z, Zhou C, Ma X, Xue Y, Ma Y. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 2020; 170:164-177. [PMID: 33352153 DOI: 10.1016/j.ijbiomac.2020.12.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Thermo-alkaline xylanases are widely applied in paper pulping industry. In this study, a novel thermostable and alkaline tolerant GH10 xylanase (Xyn30Y5) gene from alkaliphilic Bacillus sp. 30Y5 was cloned and the surface-layer homology (SLH) domains truncated enzyme (Xyn30Y5-SLH) was expressed in Escherichia coli. The purified Xyn30Y5-SLH was most active at 70 °C and pH 7.0 and showed the highest specific activity of 349.4 U mg-1. It retained more than 90% activity between pH 6.0 to 9.5 and was stable at pH 6.0-10.0. To improve the activity, 47 mutants were designed based on eight rational strategies and 21 mutants showed higher activity. By combinatorial mutagenesis, the best mutant 3B demonstrated specific activity of 1016.8 U mg-1 with a doubled catalytic efficiency (kcat/Km) and RA601/2h value, accompanied by optimal pH shift to 8.0. The molecular dynamics simulation analysis indicated that the increase of flexibility of α5 helix and loop7 located near to the catalytic residues is likely responsible for its activity improvement. And the decrease of flexibility of the most unstable regions is vital for the thermostablity improvement. This work provided not only a novel thermostable and alkaline tolerant xylanase with industrial application potential but also an effective mutagenesis strategy for xylanase activity improvement.
Collapse
Affiliation(s)
- Zhihua Lai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Takita T, Nakatani K, Katano Y, Suzuki M, Kojima K, Saka N, Mikami B, Yatsunami R, Nakamura S, Yasukawa K. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis. Enzyme Microb Technol 2019; 130:109363. [DOI: 10.1016/j.enzmictec.2019.109363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
12
|
Wang K, Cao R, Wang M, Lin Q, Zhan R, Xu H, Wang S. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:48. [PMID: 30899328 PMCID: PMC6408826 DOI: 10.1186/s13068-019-1389-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cellulose and hemicellulose are the two largest components in lignocellulosic biomass. Enzymes with activities towards cellulose and xylan have attracted great interest in the bioconversion of lignocellulosic biomass, since they have potential in improving the hydrolytic performance and reducing the enzyme costs. Exploring glycoside hydrolases (GHs) with good thermostability and activities on xylan and cellulose would be beneficial to the industrial production of biofuels and bio-based chemicals. RESULTS A novel GH10 enzyme (XynA) identified from a xylanolytic strain Bacillus sp. KW1 was cloned and expressed. Its optimal pH and temperature were determined to be pH 6.0 and 65 °C. Stability analyses revealed that XynA was stable over a broad pH range (pH 6.0-11.0) after being incubated at 25 °C for 24 h. Moreover, XynA retained over 95% activity after heat treatment at 60 °C for 60 h, and its half-lives at 65 °C and 70 °C were about 12 h and 1.5 h, respectively. More importantly, in terms of substrate specificity, XynA exhibits hydrolytic activities towards xylans, microcrystalline cellulose (filter paper and Avicel), carboxymethyl cellulose (CMC), cellobiose, p-nitrophenyl-β-d-cellobioside (pNPC), and p-nitrophenyl-β-d-glucopyranoside (pNPG). Furthermore, the addition of XynA into commercial cellulase in the hydrolysis of pretreated corn stover resulted in remarkable increases (the relative increases may up to 90%) in the release of reducing sugars. Finally, it is worth mentioning that XynA only shows high amino acid sequence identity (88%) with rXynAHJ14, a GH10 xylanase with no activity on CMC. The similarities with other characterized GH10 enzymes, including xylanases and bifunctional xylanase/cellulase enzymes, are no more than 30%. CONCLUSIONS XynA is a novel thermostable GH10 xylanase with a wide substrate spectrum. It displays good stability in a broad range of pH and high temperatures, and exhibits activities towards xylans and a wide variety of cellulosic substrates, which are not found in other GH10 enzymes. The enzyme also has high capacity in saccharification of pretreated corn stover. These characteristics make XynA a good candidate not only for assisting cellulase in lignocellulosic biomass hydrolysis, but also for the research on structure-function relationship of bifunctional xylanase/cellulase.
Collapse
Affiliation(s)
- Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Meiling Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Qibin Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| | - Sidi Wang
- College of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, No.232 Outer Ring West Rd., Panyu District, Guangzhou, 510006 Guangdong China
| |
Collapse
|