1
|
Nakagawa T, Yoshimura A, Sawai Y, Hisamatsu K, Akao T, Masaki K. Japanese sake making using wild yeasts isolated from natural environments. Biosci Biotechnol Biochem 2024; 88:231-236. [PMID: 38364793 DOI: 10.1093/bbb/zbae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
Saccharomyces cerevisiae is one of the most important microorganisms for the food industry, including Japanese sake, beer, wine, bread, and other products. For sake making, Kyokai sake yeast strains are considered one of the best sake yeast strains because these strains possess fermentation properties that are suitable for the quality of sake required. In recent years, the momentum for the development of unique sake, which is distinct from conventional sake, has grown, and there is now a demand to develop unique sake yeasts that have different sake making properties than Kyokai sake yeast strains. In this minireview, we focus on "wild yeasts," which inhabit natural environments, and introduce basic research on the wild yeasts for sake making, such as their genetic and sake fermentation aspects. Finally, we also discuss the molecular breeding of wild yeast strains for sake fermentation and the possibility for sake making using wild yeasts.
Collapse
Affiliation(s)
- Tomoyuki Nakagawa
- The Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Yoshinori Sawai
- Gifu Prefectural Research Institute for Food Sciences, Gifu, Japan
| | | | - Takeshi Akao
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Kazuo Masaki
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Tanabe K, Hayashi H, Murakami N, Yoshiyama Y, Shima J, Shoda S. Glazing Affects the Fermentation Process of Sake Brewed in Pottery. Foods 2023; 13:121. [PMID: 38201148 PMCID: PMC10778464 DOI: 10.3390/foods13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Sake (Japanese rice wine) was fermented in pottery for more than a millennium before wooden barrels were adopted to obtain a greater brewing capacity. Although a recently conducted analysis of sake brewed in pottery indicated that sake brewed in unglazed pottery contains more ethanol than that brewed in glazed pottery, little is known about the characteristics of sake brewed in pottery. In this study, we used two types of ceramic containers of identical size, one glazed and one unglazed, for small-scale sake brewing to evaluate the effects of glazing on fermentation properties. The following parameters were measured continuously in the sake samples over 3 weeks of fermentation: temperature, weight, ethanol concentration, and glucose concentration in sake mash. Taste-sensory values, minerals, and volatile components were also quantified in the final fermented sake mash. The results show that, in the unglazed containers, the temperature of the sake mash was lower and the weight loss was higher compared to the sake mash in the glazed containers. The quantity of ethanol and the levels of Na+, Fe3+, and Al3+ tended to be higher in the sake brewed in the unglazed pottery. A taste-sensory analysis revealed that umami and saltiness were also higher in the samples brewed in the unglazed pottery. These results suggest that glazing affects multiple fermentation parameters and the flavor of sake brewed in pottery. They may also suggest that the materials of the containers used in sake brewing generally affect the fermentation properties.
Collapse
Affiliation(s)
- Koichi Tanabe
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
- Research Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan
| | - Honoka Hayashi
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
| | - Natsuki Murakami
- Nara National Research Institute for Cultural Properties, 2-9-1 Nijo, Nara 630-8577, Japan; (N.M.); (S.S.)
| | - Yoko Yoshiyama
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
| | - Jun Shima
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan; (H.H.); (Y.Y.); (J.S.)
- Research Center for Fermentation and Brewing, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Shiga, Japan
| | - Shinya Shoda
- Nara National Research Institute for Cultural Properties, 2-9-1 Nijo, Nara 630-8577, Japan; (N.M.); (S.S.)
- Department of Archaeology, BioArCh, University of York, York YO10 5DD, UK
| |
Collapse
|
3
|
Klinkaewboonwong N, Ohnuki S, Chadani T, Nishida I, Ushiyama Y, Tomiyama S, Isogai A, Goshima T, Ghanegolmohammadi F, Nishi T, Kitamoto K, Akao T, Hirata D, Ohya Y. Targeted Mutations Produce Divergent Characteristics in Pedigreed Sake Yeast Strains. Microorganisms 2023; 11:1274. [PMID: 37317248 DOI: 10.3390/microorganisms11051274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.
Collapse
Affiliation(s)
- Norapat Klinkaewboonwong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Tomoya Chadani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Ikuhisa Nishida
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Yuto Ushiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Saki Tomiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoyuki Nishi
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Katsuhiko Kitamoto
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Takase S, Tomonaga K, Tanaka J, Moriya C, Kiyoshi K, Akao T, Watanabe K, Kadokura T, Nakayama S. The bio3 mutation in sake yeast leads to changes in organic acid profiles and ester levels but not ethanol production. J Biosci Bioeng 2023:S1389-1723(23)00115-9. [PMID: 37183145 DOI: 10.1016/j.jbiosc.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Biotin is an essential coenzyme that is bound to carboxylases and participates in fatty acid synthesis. The fact that sake yeast exhibit biotin prototrophy while almost all other Saccharomyces cerevisiae strains exhibit biotin auxotrophy, implies that biotin prototrophy is an important factor in sake brewing. In this study, we inserted a stop codon into the biotin biosynthetic BIO3 gene (cording for 7,8-diamino-pelargonic acid aminotransferase) of a haploid sake yeast strain using the marker-removable plasmid pAUR135 and investigated the fermentation profile of the resulting bio3 mutant. Ethanol production was not altered when the bio3 mutant was cultured in Yeast Malt (YM) medium containing 10% glucose at 15 °C and 30 °C. Interestingly, ethanol production was also not changed during the sake brewing process. On the other hand, the levels of organic acids in the bio3 mutant were altered after culturing in YM medium and during sake brewing. In addition, ethyl hexanoate and isoamyl acetate levels decreased in the bio3 mutant during sake brewing. Metabolome analysis revealed that the decreased levels of fatty acids in the bio3 mutant were attributed to the decreased levels of ethyl hexanoate. Further, the transcription level of genes related to the synthesis of ethyl hexanoate and isoamyl acetate were significantly reduced. The findings indicated that although the decrease in biotin biosynthesis did not affect ethanol production, it did affect the synthesis of components such as organic acids and aromatic compounds. Biotin biosynthesis ability is thus a key factor in sake brewing.
Collapse
Affiliation(s)
- Shiori Takase
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuko Tomonaga
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jumpei Tanaka
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Chise Moriya
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
5
|
Cao Y, Zhang C, Fang Y, Liu Y, Lyu K, Ding J, Wang X. Investigation the global effect of rare earth gadolinium on the budding Saccharomyces cerevisiae by genome-scale screening. Front Microbiol 2022; 13:1022054. [DOI: 10.3389/fmicb.2022.1022054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionThe rare earth gadolinium (Gd) is widely used in industry and medicine, which has been treated as an emerging pollutant in environment. The increasing pollution of Gd has potential hazards to living organisms. Thus it is essential to investigate the toxicity and action mechanism of Gd in biological system.MethodsIn this study, the global effect and activation mechanism of Gd on yeast were investigated by genome-scale screening.Results and discussionOur results show that 45 gene deletion strains are sensitive to Gd and 10 gene deletion strains are Gd resistant from the diploid gene deletion strain library of Saccharomyces cerevisiae. The result of localization analysis shows that most of these genes are involved in cell metabolism, cell cycle, transcription, translation, protein synthesis, protein folding, and cell transport. The result of functional analysis shows that four genes (CNB1, CRZ1, VCX1, and GDT1) are involved in the calcium signaling pathway, and four genes (PHO84, PHO86, PHO2, and PHO4) are involved in phosphorus metabolism. For Gd3+ has the similar ion radius with Ca2+ and easily binds to the phosphate radical, it affects Ca2+ signaling pathway and phosphorus metabolism. The genes ARF1, ARL1, ARL3, SYS1, COG5, COG6, YPT6, VPS9, SSO2, MRL1, AKL1, and TRS85 participate in vesicle transport and protein sorting. Thus, Gd accumulation affects the function of proteins related to vesicle transport, which may result in the failure of Gd transport out of cells. In addition, the intracellular Gd content in the 45 sensitive deletion strains is higher than that in the wild type yeast under Gd stress. It suggests that the sensitivity of yeast deletion strains is related to the excessive intracellular Gd accumulation.
Collapse
|
6
|
Reconstructing and counting genomic fragments through tagmentation-based haploid phasing. Sci Rep 2021; 11:18907. [PMID: 34556684 PMCID: PMC8460729 DOI: 10.1038/s41598-021-97852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Single-cell sequencing provides a new level of granularity in studying the heterogeneous nature of cancer cells. For some cancers, this heterogeneity is the result of copy number changes of genes within the cellular genomes. The ability to accurately determine such copy number changes is critical in tracing and understanding tumorigenesis. Current single-cell genome sequencing methodologies infer copy numbers based on statistical approaches followed by rounding decimal numbers to integer values. Such methodologies are sample dependent, have varying calling sensitivities which heavily depend on the sample’s ploidy and are sensitive to noise in sequencing data. In this paper we have demonstrated the concept of integer-counting by using a novel bioinformatic algorithm built on our library construction chemistry in order to detect the discrete nature of the genome.
Collapse
|
7
|
Lifestyle, Lineage, and Geographical Origin Influence Temperature-Dependent Phenotypic Variation across Yeast Strains during Wine Fermentation. Microorganisms 2020; 8:microorganisms8091367. [PMID: 32906626 PMCID: PMC7565122 DOI: 10.3390/microorganisms8091367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022] Open
Abstract
Saccharomyces cerevisiae yeasts are a diverse group of single-celled eukaryotes with tremendous phenotypic variation in fermentation efficiency, particularly at different temperatures. Yeast can be categorized into subsets based on lifestyle (Clinical, Fermentation, Laboratory, and Wild), genetic lineage (Malaysian, Mosaic, North American, Sake, West African, and Wine), and geographical origin (Africa, Americas, Asia, Europe, and Oceania) to start to understand their ecology; however, little is known regarding the extent to which these groupings drive S. cerevisiae fermentative ability in grape juice at different fermentation temperatures. To investigate the response of yeast within the different subsets, we quantified fermentation performance in grape juice by measuring the lag time, maximal fermentation rate (Vmax), and fermentation finishing efficiency of 34 genetically diverse S. cerevisiae strains in grape juice at five environmentally and industrially relevant temperatures (10, 15, 20, 25, and 30 °C). Extensive multivariate analysis was applied to determine the effects of lifestyle, lineage, geographical origin, strain, and temperature on yeast fermentation phenotypes. We show that fermentation capability is inherent to S. cerevisiae and that all factors are important in shaping strain fermentative ability, with temperature having the greatest impact, and geographical origin playing a lesser role than lifestyle or genetic lineage.
Collapse
|