1
|
Wei X, Yue L, Zhao B, Jiang N, Lei H, Zhai X. Recent advances and challenges of revolutionizing drug-resistant tuberculosis treatment. Eur J Med Chem 2024; 277:116785. [PMID: 39191032 DOI: 10.1016/j.ejmech.2024.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Tuberculosis (TB), an infectious disease induced by Mycobacterium tuberculosis, is one of the primary public health threats all over the world. Since the prevalence of first-line anti-TB agents, the morbidity and mortality issues of TB descended obviously. Nevertheless, the emergences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, the double prevalence of HIV-TB co-infection, and the insufficiency of plentiful health care have led to an increased incidence of TB. It is noted that current drugs for treating TB have proved unsustainable in the face of highly resistant strains. Fortunately, five categories of new drugs and candidates with new mechanisms of action have emerged in the field of anti-TB research after decades of stagnation in the progression of anti-TB drugs. In this paper, the research status of these promising anti-TB drugs and candidates are reviewed, emphasizing the challenges to be addressed for efficient development of future TB therapies.
Collapse
Affiliation(s)
- Xiujian Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bing Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Koide K, Kim H, Whelan MVX, Belotindos LP, Tanomsridachchai W, Changkwanyeun R, Usui M, Ó Cróinín T, Thapa J, Nakajima C, Suzuki Y. WQ-3810, a fluoroquinolone with difluoropyridine derivative as the R1 group exerts high potency against quinolone-resistant Campylobacter jejuni. Microbiol Spectr 2024; 12:e0432223. [PMID: 39162520 PMCID: PMC11448395 DOI: 10.1128/spectrum.04322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Quinolone-resistant Campylobacter jejuni have been increasing worldwide. Quinolones exert their antibacterial activity by inhibiting DNA gyrase, but most of the isolates acquire quinolone resistance via an amino acid substitution in the A subunit of DNA gyrase. WQ-3810 is a quinolone antibiotic that has been reported to have high potency even to DNA gyrase with amino acid substitutions in several bacterial species; however, there was no information on C. jejuni. Hence, this study aimed to evaluate the activity of WQ-3810 to inhibit wild-type/mutant DNA gyrases of C. jejuni and the bacterial growth for accessing the potency for the treatment of quinolone-resistant C. jejuni infection. The inhibitory activity of WQ-3810 was assessed and compared with ciprofloxacin and nalidixic acid by calculating the half maximal inhibitory concentration (IC50) against wild-type/mutant DNA gyrases. Next, the minimum inhibitory concentration (MIC) of WQ-3810 and five other quinolones was determined for C. jejuni including quinolone-resistant strains with amino acid substitutions in GyrA. Furthermore, the interaction between WQ-3810 and wild-type/mutant DNA gyrase was speculated using docking simulations. The IC50 of WQ-3810 against wild-type DNA gyrase was 1.03 µg/mL and not different from that of ciprofloxacin. However, those of WQ-3810 against mutant DNA gyrases were much lower than ciprofloxacin. The MICs of WQ-3810 ranged <0.016-0.031 µg/mL and were the lowest against both quinolone-susceptible and quinolone-resistant strains among the examined quinolones. The results obtained by the docking simulation agreed well with this observation. WQ-3810 seems to be a promising antimicrobial agent for the infections caused by quinolone-resistant C. jejuni. IMPORTANCE WQ-3810, a relatively new quinolone antibiotic, demonstrates exceptional antibacterial properties against certain pathogens in previous studies. However, its efficacy against quinolone-resistant Campylobacter jejuni was not previously reported. The prevalence of quinolone-resistant C. jejuni as a cause of foodborne illnesses is increasing, prompting this investigation into the effectiveness of WQ-3810 as a countermeasure. This study revealed high inhibitory activity of WQ-3810 against both wild-type and mutant DNA gyrases of C. jejuni. WQ-3810 was equally efficacious as ciprofloxacin against wild-type DNA gyrases but showed superior effectiveness against mutant DNA gyrases. WQ-3810 also demonstrated the lowest minimum inhibitory concentrations, highlighting its enhanced potency against both susceptible and resistant strains of C. jejuni. This observation was well supported by the results of the in silico analysis. Consequently, WQ-3810 exhibits a higher level of bactericidal activity compared to existing quinolones in combating both susceptible and resistant C. jejuni isolates.
Collapse
Affiliation(s)
- Kentaro Koide
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Lawrence P Belotindos
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | | | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| |
Collapse
|
3
|
Miura-Ajima N, Suwanthada P, Kongsoi S, Kim H, Pachanon R, Koide K, Mori S, Thapa J, Nakajima C, Suzuki Y. Effect of WQ-3334 on Campylobacter jejuni carrying a DNA gyrase with dominant amino acid substitutions conferring quinolone resistance. J Infect Chemother 2024; 30:1028-1034. [PMID: 38580055 DOI: 10.1016/j.jiac.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.
Collapse
Affiliation(s)
- Nami Miura-Ajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | | | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, 001-0020, Japan; Hokkaido University Institute for Vaccine Research and Development, Sapporo, 001-0020, Japan.
| |
Collapse
|
4
|
Suwanthada P, Kongsoi S, Jayaweera S, Akapelwa ML, Thapa J, Nakajima C, Suzuki Y. Interplay between Amino Acid Substitution in GyrA and QnrB19: Elevating Fluoroquinolone Resistance in Salmonella Typhimurium. ACS Infect Dis 2024; 10:2785-2794. [PMID: 38898378 DOI: 10.1021/acsinfecdis.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Globally, there have been increasing reports of antimicrobial resistance in nontyphoidal Salmonella (NTS), which can develop into severe and potentially life-threatening diarrhea. This study focuses on the synergistic effects of DNA gyrase mutations and plasmid-mediated quinolone resistance (PMQR) genes, specifically qnrB19, on fluoroquinolone (FQ) resistance in Salmonella Typhimurium. By utilizing recombinant mutants, GyrAS83F and GyrAD87N, and QnrB19's, we discovered a significant increase in fluoroquinolones resistance when QnrB19 is present. Specifically, ciprofloxacin and moxifloxacin's inhibitory concentrations rose 10- and 8-fold, respectively. QnrB19 was found to enhance the resistance capacity of mutant DNA gyrases, leading to high-level FQ resistance. Additionally, we observed that the ratio of QnrB19 to DNA gyrase played a critical role in determining whether QnrB19 could protect DNA gyrase against FQ inhibition. Our findings underscore the critical need to understand these resistance mechanisms, as their coexistence enables bacteria to withstand therapeutic FQ levels, posing a significant challenge to treatment efficacy.
Collapse
Affiliation(s)
- Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 73140, Thailand
| | - Sasini Jayaweera
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| |
Collapse
|
5
|
Toyting J, Miura N, Utrarachkij F, Tanomsridachchai W, Belotindos LP, Suwanthada P, Kapalamula TF, Kongsoi S, Koide K, Kim H, Thapa J, Nakajima C, Suzuki Y. Exploration of the novel fluoroquinolones with high inhibitory effect against quinolone-resistant DNA gyrase of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0133023. [PMID: 37795999 PMCID: PMC10715191 DOI: 10.1128/spectrum.01330-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Quinolone-resistant nontyphoidal Salmonella is a pressing public health concern, demanding the exploration of novel treatments. In this study, we focused on two innovative synthetic fluoroquinolones, WQ-3034 and WQ-3154. Our findings revealed that these new compounds demonstrate potent inhibitory effects, even against mutant strains that cause resistance to existing quinolones. Hence, WQ-3034 and WQ-3154 could potentially be effective therapeutic agents against quinolone-resistant Salmonella Typhimurium. Furthermore, the data obtained in this study will be baseline information for antimicrobial drug development.
Collapse
Affiliation(s)
- Jirachaya Toyting
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Nami Miura
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Lawrence P. Belotindos
- Biosafety and Environment Section, Research and Development Division, Philippine Carabao Center National Headquarters and Gene Pool Science City of Munoz, Munoz, Nueva Ecija, Philippines
| | - Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Thoko Flav Kapalamula
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Sapporo, Japan
| |
Collapse
|
6
|
Suwanthada P, Kongsoi S, Miura N, Belotindos LP, Piantham C, Toyting J, Akapelwa ML, Pachanon R, Koide K, Kim H, Thapa J, Nakajima C, Suzuki Y. The Impact of Substitutions at Positions 1 and 8 of Fluoroquinolones on the Activity Against Mutant DNA Gyrases of Salmonella Typhimurium. Microb Drug Resist 2023; 29:552-560. [PMID: 37792363 DOI: 10.1089/mdr.2023.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Although many drug-resistant nontyphoidal Salmonella (NTS) infections are reported globally, their treatment is challenging owing to the ineffectiveness of the currently available antimicrobial drugs against resistant bacteria. It is therefore essential to discover novel antimicrobial drugs for the management of these infections. In this study, we report high inhibitory activities of the novel fluoroquinolones (FQs; WQ-3810 and WQ-3334) with substitutions at positions R-1 by 6-amino-3,5-difluoropyridine-2-yl and R-8 by methyl group or bromine, respectively, against wild-type and mutant DNA gyrases of Salmonella Typhimurium. The inhibitory activities of these FQs were assessed against seven amino acid substitutions in DNA gyrases conferring FQ resistance to S. Typhimurium, including high-level resistant mutants, Ser83Ile and Ser83Phe-Asp87Asn by in vitro DNA supercoiling assay. Drug concentrations of WQ compounds with 6-amino-3,5-difluoropyridine-2-yl that suppressed DNA supercoiling by 50% (IC50) were found to be ∼150-fold lower than ciprofloxacin against DNA gyrase with double amino acid substitutions. Our findings highlight the importance of the chemical structure of an FQ drug on its antimicrobial activity. Particularly, the presence of 6-amino-3,5-difluoropyridine-2-yl at R-1 and either methyl group or bromine at R-8 of WQ-3810 and WQ-3334, respectively, was associated with improved antimicrobial activity. Therefore, WQ-3810 and WQ-3334 are promising candidates for use in the treatment of patients infected by FQ-resistant Salmonella spp.
Collapse
Affiliation(s)
- Pondpan Suwanthada
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Nami Miura
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lawrence P Belotindos
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Biosafety and Environment Section, Research for Development Division, Philippine Carabao Center National Headquarters and Gene Pool, Science City of Munoz, Philippines
| | - Chayada Piantham
- Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jirachaya Toyting
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mwangala L Akapelwa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ruttana Pachanon
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kentaro Koide
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVRe, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development: HU-IVRe, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Thapa J, Chizimu JY, Kitamura S, Akapelwa ML, Suwanthada P, Miura N, Toyting J, Nishimura T, Hasegawa N, Nishiuchi Y, Gordon SV, Nakajima C, Suzuki Y. Characterization of DNA Gyrase Activity and Elucidation of the Impact of Amino Acid Substitution in GyrA on Fluoroquinolone Resistance in Mycobacterium avium. Microbiol Spectr 2023; 11:e0508822. [PMID: 37067420 PMCID: PMC10269562 DOI: 10.1128/spectrum.05088-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
Mycobacterium avium, a member of the M. avium complex (MAC), is the major pathogen contributing to nontuberculous mycobacteria (NTM) infections worldwide. Fluoroquinolones (FQs) are recommended for the treatment of macrolide-resistant MACs. The association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA of M. avium is not yet clearly understood, as many FQ-resistant clinical M. avium isolates do not have such mutations. This study aimed to elucidate the role of amino acid substitution in the QRDR of M. avium GyrA in the development of FQ resistance. We found four clinical M. avium subsp. hominissuis isolates with Asp-to-Gly change at position 95 (Asp95Gly) and Asp95Tyr mutations in gyrA that were highly resistant to FQs and had 2- to 32-fold-higher MICs than the wild-type (WT) isolates. To clarify the contribution of amino acid substitutions to FQ resistance, we produced recombinant WT GyrA, GyrB, and four GyrA mutant proteins (Ala91Val, Asp95Ala, Asp95Gly, and Asp95Tyr) to elucidate their potential role in FQ resistance, using them to perform FQ-inhibited DNA supercoiling assays. While all the mutant GyrAs contributed to the higher (1.3- to 35.6-fold) FQ 50% inhibitory concentration (IC50) than the WT, Asp95Tyr was the most resistant mutant, with an IC50 15- to 35.6-higher than that of the WT, followed by the Asp95Gly mutant, with an IC50 12.5- to 17.6-fold higher than that of the WT, indicating that these amino acid substitutions significantly reduced the inhibitory activity of FQs. Our results showed that amino acid substitutions in the gyrA of M. avium contribute to FQ resistance. IMPORTANCE The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging Mycobacterium avium-associated nontuberculous mycobacteria infections worldwide. For M. avium, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA is not yet clearly understood. Here, we report that four clinical M. avium isolates with a mutation in the QRDR of gyrA were highly resistant to FQs. We further clarified the impact of mutations in the QRDR of GyrA proteins by performing in vitro FQ-inhibited DNA supercoiling assays. These results confirmed that, like in Mycobacterium tuberculosis, mutations in the QRDR of gyrA also strongly contribute to FQ resistance in M. avium. Since many FQ-resistant M. avium isolates do have these mutations, the detailed molecular mechanism of FQ resistance in M. avium needs further exploration.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambian National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Soyoka Kitamura
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nami Miura
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jirachaya Toyting
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
- Office of Academic Research and Industry-Government Collaboration, Section of Microbial Genomics and Ecology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Park JH, Yamaguchi T, Ouchi Y, Koide K, Pachanon R, Chizimu JY, Mori S, Kim H, Mukai T, Nakajima C, Suzuki Y. Interaction of Quinolones Carrying New R1 Group with Mycobacterium leprae DNA Gyrase. Microb Drug Resist 2021; 27:1616-1623. [PMID: 34077282 DOI: 10.1089/mdr.2020.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Leprosy is a chronic infectious disease caused by Mycobacterium leprae and the treatment of choice is ofloxacin (OFX). Specific amino acid substitutions in DNA gyrase of M. leprae have been reported leading to resistance against the drug. In our previous study, WQ-3810, a fluoroquinolone with a new R1 group (6-amino-3,5-difluoropyridin-2-yl) was shown to have a strong inhibitory activity on OFX-resistant DNA gyrases of M. leprae, and the structural characteristics of its R1 group was predicted to enhance the inhibitory activity. Methodology/Principal Finding: To further understand the contribution of the R1 group, WQ-3334 with the same R1 group as WQ-3810, WQ-4064, and WQ-4065, but with slightly modified R1 group, were assessed on their activities against recombinant DNA gyrase of M. leprae. An in silico study was conducted to understand the molecular interactions between DNA gyrase and WQ compounds. WQ-3334 and WQ-3810 were shown to have greater inhibitory activity against M. leprae DNA gyrase than others. Furthermore, analysis using quinolone-resistant M. leprae DNA gyrases showed that WQ-3334 had greater inhibitory activity than WQ-3810. The R8 group was shown to be a factor for the linkage of the R1 groups with GyrB by an in silico study. Conclusions/Significance: The inhibitory effect of WQ compounds that have a new R1 group against M. leprae DNA gyrase can be enhanced by improving the binding affinity with different R8 group molecules. The information obtained by this work could be applied to design new fluoroquinolones effective for quinolone-resistant M. leprae and other bacterial pathogens.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Tomoyuki Yamaguchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yuki Ouchi
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kentaro Koide
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ruttana Pachanon
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hyun Kim
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo, Japan
| |
Collapse
|
9
|
Pachanon R, Koide K, Kongsoi S, Ajima N, Kapalamula TF, Nakajima C, Suthienkul O, Suzuki Y. Effectiveness of Fluoroquinolones with Difluoropyridine Derivatives as R1 Groups on the Salmonella DNA Gyrase in the Presence and Absence of Plasmid-Encoded Quinolone Resistance Protein QnrB19. Microb Drug Resist 2021; 27:1412-1419. [PMID: 33835868 DOI: 10.1089/mdr.2020.0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: WQ-3810 has strong inhibitory activity against Salmonella and other fluoroquinolone-resistant pathogens. The unique potentiality of this is attributed to 6-amino-3,5-difluoropyridine-2-yl at R1 group. The aim of this study was to examine WQ-3810 and its derivatives WQ-3334 and WQ-4065 as the new drug candidate for wild-type Salmonella and that carrying QnrB19. Materials and Methods: The half maximal inhibitory concentrations (IC50s) of WQ-3810, WQ-3334 (Br atom in place of methyl group at R8), and WQ-4065 (6-ethylamino-3,5-difluoropyridine-2-yl in place of 6-amino-3,5-difluoropyridine-2-yl group at R1) in the presence or absence of QnrB19 were assessed by in vitro DNA supercoiling assay utilizing recombinant DNA gyrase and QnrB19. Results: IC50s of WQ-3810, WQ-3334, and WQ-4065 against Salmonella DNA gyrase were 0.031 ± 0.003, 0.068 ± 0.016, and 0.72 ± 0.39 μg/mL, respectively, while QnrB19 increased IC50s of WQ-3810, WQ-3334, and WQ-4065 to 0.44 ± 0.05, 0.92 ± 0.34, and 9.16 ± 2.21 μg/mL, respectively. Conclusion: WQ-3810 and WQ-3334 showed stronger inhibitory activity against Salmonella Typhimurium DNA gyrases than WQ-4065 even in the presence of QnrB19. The results suggest that 6-amino-3,5-difluoropyridine-2-yl group at R1 is playing an important role and WQ-3810 and WQ-3334 to be good candidates for Salmonella carrying QnrB19.
Collapse
Affiliation(s)
- Ruttana Pachanon
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kentaro Koide
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Nami Ajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Thoko Flav Kapalamula
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, The Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Salaya, Thailand
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, The Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|