1
|
Vertegel P, Milkin P, Murashko A, Parker M, Peranidze K, Emashova N, Minko S, Reukov V. Cell detachment: A review of techniques, challenges, and opportunities for advancing biomedical research and applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:50-68. [PMID: 40023326 DOI: 10.1016/j.pbiomolbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Culturing living cells outside the body is a complex process involving various techniques. Despite advances, harvesting cells remains challenging, especially in light of new emerging and scaled-up cell culture technologies. Enzymatic adherent cell harvesting is the most used and robust technology but can harm cells. Non-enzymatic detachment methods offer advantages but also present challenges. Thermo-responsive polymers require precise control of the molecular characteristics and thickness of the thermoresponsive films, which makes this method less robust and more expensive. This review highlights the importance of controlling harvested cell quality and its relationship to cell binding and detachment mechanisms. Many alternative methods have not been extensively analyzed, and their impact on cell quality beyond standard viability assays is not yet known. Developing robust cell harvesting methods for bioreactor microcarriers is a rapidly growing challenge as the cell manufacturing industry expands. Microcarriers with stimuli-responsive coatings face challenges similar to those observed for laboratory-scale cell dishes and bring an additional aspect of the need for microbead recycling consideration. All that together underlines the importance of the research in biomaterials and biotechnology for cell manufacturing.
Collapse
|
2
|
Zhao Y, Cao Z, Zhang J, Tian J, Cai H. Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment. Biomed Mater 2024; 19:065023. [PMID: 39312938 DOI: 10.1088/1748-605x/ad7e6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
The preparation of cells is a critical step in cell therapy. To ensure the effectiveness of cells used for clinical treatments, it is essential to harvest adherent cells from the culture media in a way that preserves their high viability and full functionality. In this study, we developed temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)-grafted polystyrene (PS) microspheres using reversible addition-fragmentation chain transfer polymerization. These microspheres allow for the non-destructive harvesting of cultured cells through temperature changes. The composition and physicochemical properties of the PNIPAM-grafted PS microspheres were confirmed using infrared spectroscopy, elemental analysis, dynamic light scattering, and thermogravimetric analysis.In vitroexperiments demonstrated that these microspheres exhibit excellent biocompatibility, supporting the adhesion and proliferation of various cells. Moreover, the microspheres showed good temperature responsiveness in thermosensitive detachment experiments with GFP-HepG2cells and umbilical cord mesenchymal stem cells (UC-MSCs). Additionally, through orthogonal experiments, we identified a cell detachment aid mixture that significantly improved the dispersibility of cells detached from the microspheres, enhancing the efficiency of thermosensitive cell detachment by approximately 40%. The harvested UC-MSCs retained their capacity for re-proliferation and trilineage differentiation. Consequently, the temperature-responsive microspheres developed in this study, combined with the cell detachment aid mixtures, hold great potential for large-scale culture and harvesting of therapeutic cells in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Zida Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
3
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
4
|
Salari A, Appak-Baskoy S, Coe IR, Tsai SSH, Kolios MC. An ultrafast enzyme-free acoustic technique for detaching adhered cells in microchannels. RSC Adv 2021; 11:32824-32829. [PMID: 35493567 PMCID: PMC9042199 DOI: 10.1039/d1ra04875a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Adherent cultured cells are widely used biological tools for a variety of biochemical and biotechnology applications, including drug screening and gene expression analysis. One critical step in culturing adherent cells is the dissociation of cell monolayers into single-cell suspensions. Different enzymatic and non-enzymatic methods have been proposed for this purpose. Trypsinization, the most common enzymatic method for dislodging adhered cells, can be detrimental to cells, as it can damage cell membranes and ultimately cause cell death. Additionally, all available techniques require a prolonged treatment duration, typically on the order of minutes (5-10 min). Dissociation of cells becomes even more challenging in microfluidic devices, where, due to the nature of low Reynolds number flow and reduced mixing efficiency, multiple washing steps and prolonged trypsinization may be necessary to treat all cells. Here, we report a novel acoustofluidic method for the detachment of cells adhered onto a microchannel surface without exposing the cells to any enzymatic or non-enzymatic chemicals. This method enables a rapid (i.e., on the order of seconds), cost-effective, and easy-to-operate cell detachment strategy, yielding a detachment efficiency of ∼99% and cellular viability similar to that of the conventional trypsinization method. Also, as opposed to biochemical-based techniques (e.g., enzymatic), in our approach, cells are exposed to the dissociating agent (i.e., substrate-mediated acoustic excitation and microstreaming flow) only for as long as they remain attached to the substrate. After dissociation, the effect of acoustic excitation is reduced to microstreaming flow, therefore, minimizing unwanted effects of the dissociating agent on the cell phenotype. Additionally, our results suggest that cell excitation at acoustic powers lower than that required for complete cell detachment can potentially be employed for probing the adhesion strength of cell-substrate attachment. This novel approach can, therefore, be used for a wide range of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Biomedical Engineering Graduate Program, Ryerson University Toronto ON M5B 2K3 Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Chemistry and Biology, Ryerson University Toronto ON M5B 2K3 Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Chemistry and Biology, Ryerson University Toronto ON M5B 2K3 Canada
- Molecular Science Graduate Program, Ryerson University Toronto ON M5B2K3 Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Mechanical and Industrial Engineering, Ryerson University Toronto ON M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Physics, Ryerson University Toronto ON M5B 2K3 Canada
| |
Collapse
|
5
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
6
|
Chavkin NW, Hirschi KK. Single Cell Analysis in Vascular Biology. Front Cardiovasc Med 2020; 7:42. [PMID: 32296715 PMCID: PMC7137757 DOI: 10.3389/fcvm.2020.00042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The ability to quantify DNA, RNA, and protein variations at the single cell level has revolutionized our understanding of cellular heterogeneity within tissues. Via such analyses, individual cells within populations previously thought to be homogeneous can now be delineated into specific subpopulations expressing unique sets of genes, enabling specialized functions. In vascular biology, studies using single cell RNA sequencing have revealed extensive heterogeneity among endothelial and mural cells even within the same vessel, key intermediate cell types that arise during blood and lymphatic vessel development, and cell-type specific responses to disease. Thus, emerging new single cell analysis techniques are enabling vascular biologists to elucidate mechanisms of vascular development, homeostasis, and disease that were previously not possible. In this review, we will provide an overview of single cell analysis methods and highlight recent advances in vascular biology made possible through single cell RNA sequencing.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Karen K Hirschi
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States.,Departments of Medicine and Genetics, Cardiovascular Research Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|