1
|
Braga JD, Komaru T, Umino M, Nagao T, Matsubara K, Egusa A, Yanaka N, Nishimura T, Kumrungsee T. Histidine-containing dipeptide deficiency links to hyperactivity and depression-like behaviors in old female mice. Biochem Biophys Res Commun 2024; 729:150361. [PMID: 38972141 DOI: 10.1016/j.bbrc.2024.150361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Takumi Komaru
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Ai Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Toshihide Nishimura
- Department of Food Nutrition, Kagawa Nutrition University, Saitama, 350-0214, Japan
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
2
|
Qiu K, Wang S, Duan F, Sang Z, Wei S, Liu H, Tan H. Rosemary: Unrevealing an old aromatic crop as a new source of promising functional food additive-A review. Compr Rev Food Sci Food Saf 2024; 23:e13273. [PMID: 38284599 DOI: 10.1111/1541-4337.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Rosemary (Rosmarinus officinalis L.) is one of the most famous spice plants belonging to the Lamiaceae family as a remarkably beautiful horticultural plant and economically agricultural crop. The essential oil of rosemary has been enthusiastically welcome in the whole world for hundreds of years. Now, it is wildly prevailing as a promising functional food additive for human health. More importantly, due to its significant aroma, food, and nutritional value, rosemary also plays an essential role in the food/feed additive and food packaging industries. Modern industrial development and fundamental scientific research have extensively revealed its unique phytochemical constituents with biologically meaningful activities, which closely related to diverse human health functions. In this review, we provide a comprehensively systematic perspective on rosemary by summarizing the structures of various pharmacological and nutritional components, biologically functional activities and their molecular regulatory networks required in food developments, and the recent advances in their applications in the food industry. Finally, the temporary limitations and future research trends regarding the development of rosemary components are also discussed and prospected. Hence, the review covering the fundamental research advances and developing prospects of rosemary is a desirable demand to facilitate their better understanding, and it will also serve as a reference to provide many insights for the future promotion of the research and development of functional foods related to rosemary.
Collapse
Affiliation(s)
- Kaidi Qiu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Fangfang Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuan Sang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Yang M, Yin Y, Wang F, Bao X, Long L, Tan B, Yin Y, Chen J. Effects of dietary rosemary extract supplementation on growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning pigs. J Anim Sci 2021; 99:6346706. [PMID: 34370023 DOI: 10.1093/jas/skab237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Rosemary (Rosmarinus officinalis L.) extract (RE) has multiple pharmacological and biological activities, including the use as a food additive and medicine. This study was conducted to investigate the effects of dietary RE supplementation on the growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning piglets. A total of 192 crossbred weaned piglets [Duroc × (Large White × Landrace)] (initial body weight = 6.65 ± 0.33 kg, weaned days = 23 ± 1 d) were group housed (six pigs per pen; n = 8 pens/treatment). Pigs were fed a corn-soybean meal-based control diet or the basal diet supplemented with 100, 200, or 400 mg/kg RE. Pigs were allowed ad libitum access to fed for 21 d. The growth performance and apparent total tract digestibility of nutrients, and intestinal morphology and antioxidant status were evaluated. The components of the microbial microflora were also determined in the cecal samples. Compared with the control, dietary supplementation with RE increased the final body weight, average daily gain, and average daily feed intake (linear, P = 0.038, 0.016, and 0.009, respectively), and decreased the diarrhea ratio in piglets (linear, P < 0.05). The digestibility of crude protein (linear, P = 0.034) and gross energy (linear, P = 0.046) increased with treatment with RE. Piglets fed RE showed longer villus height (linear, P = 0.037 and 0.028, respectively) and villus height/crypt depth (linear, P = 0.004 and 0.012; quadratic, P = 0.023 and 0.036, respectively) in the jejunum and ileum, in addition to a lesser crypt depth in the jejunum (linear, P = 0.019) and ileum (quadratic, P = 0.042). The addition of RE increased the activity of superoxide dismutase (linear, P = 0.035 and 0.008, respectively) and glutathione peroxidase activity (linear, P = 0.027 and 0.039, respectively) and decreased the content of malondialdehyde (linear, P = 0.041 and 0.013; quadratic, P = 0.023 and 0.005, respectively) in the serum and liver. Dietary RE supplementation, compared with the control, increased the number of Bifidobacterium (linear, P = 0.034) and Bacteroidetes (linear, P = 0.029), while decreased Escherichia coli (linear, P = 0.008; quadratic, P = 0.014) in the cecal contents. Thus, dietary RE supplementation can improve growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and the microbiota in weaned piglets, and 200 mg/kg may be considered the optimum dosage.
Collapse
Affiliation(s)
- Mei Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xuetai Bao
- CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, PR China
| | - Lina Long
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, PR China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,CAS Key Laboratory of Agro ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, PR China
| |
Collapse
|