1
|
Wang X, Zhang X, Gong C, Yang J, Chen J, Guo W. Functionalized GelMA/CMCS Composite Hydrogel Incorporating Magnesium Phosphate Cement for Bone Regeneration. Biomedicines 2025; 13:257. [PMID: 40002671 PMCID: PMC11852312 DOI: 10.3390/biomedicines13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite hydrogel incorporating magnesium phosphate cement (MPC) for enhanced bone regeneration. Methods: These composites were developed by incorporating potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) powders into methacrylated gelatin/carboxymethyl chitosan (GelMA-C) hydrogels. The material's mechanical properties, antibacterial performance, and cytocompatibility were evaluated. In vitro experiments involved cell viability and osteogenic differentiation assays using rBMSCs as well as angiogenic potential assays using HUVECs. The hydrogel was also assessed for its potential in promoting bone repair in a rat (Sprague-Dawley) model of bone defect. Results: The developed GelMA-CM composite demonstrated improved mechanical properties, biocompatibility, and osteogenic potential compared to individual GelMA or CMCS hydrogels. Incorporation of MPC facilitated the sustained release of ions which promoted osteogenic differentiation of pre-osteoblasts. In vivo results indicated accelerated bone healing in the rat bone defect model. Conclusions: The functionalized GelMA-CM composite could be a viable candidate for clinical applications in bone regeneration therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.W.); (X.Z.); (C.G.); (J.Y.); (J.C.)
| |
Collapse
|
2
|
Liu H, Jiao Y, Forouzanfar T, Wu G, Guo R, Lin H. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair. BIOMATERIALS ADVANCES 2024; 160:213856. [PMID: 38640877 DOI: 10.1016/j.bioadv.2024.213856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Large bone defects cause significant clinical challenges due to the lack of optimal grafts for effective regeneration. The tissue engineering way that requires the combination of biomaterials scaffold, stem cells and proper bioactive factors is a prospective method for large bone repair. Here, we synthesized a three-arm host-guest supramolecule (HGSM) to covalently crosslinking with the naturally derived polymer methacrylated silk fibroin (SFMA). The combination of HGSM and SFMA can form a high strength double-crosslinked hydrogel HGSFMA, that serve as the hydrogel scaffold for bone marrow mesenchymal stem cells (BMSCs) growing. Icariin (ICA) loaded in the HGSFMA hydrogel can promote the osteogenesis efficiency of BMSCs and inhibit the osteoclasts differentiation. Our findings demonstrated that the HGSFMA/ICA hydrogel effectively promoted the in vitro adhesion, proliferation, and osteogenic differentiation of BMSCs. Rat femoral defects model show that this hydrogel can completely repair femoral damage within 4 weeks and significantly promote the secretion of osteogenesis-related proteins. In summary, we have prepared an effective biomimetic bone carrier, offering a novel strategy for bone regeneration and the treatment of large-scale bone defects.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yang Jiao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, No. 5, Nanmencang, Dongsishitiao Street, Dongcheng District, Beijing 100700, China
| | - T Forouzanfar
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Gustav Mahlerlaan, 3004, Amsterdam 1081LA, the Netherlands.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou 310006, China; Savid School of Stomatology, Hangzhou Medical College, Hangzhou 311399, China; Hangzhou Stomatology Hospital, Pinghai Road, Shangcheng District, Hangzhou 310006, China.
| |
Collapse
|
3
|
Li Z, Xu P, Shang L, Ma B, Zhang H, Fu L, Ou Y, Mao Y. 3D collagen porous scaffold carrying PLGA-PTX/SDF-1α recruits and promotes neural stem cell differentiation for spinal cord injury repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2332-2355. [PMID: 37566099 DOI: 10.1080/09205063.2023.2247715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Spinal Cord Injury (SCI), one of the major factors of disability, can cause irreversible motor and sensory impairment. There are no effective therapeutic drugs and technologies available in domestic or foreign countries currently. Neural stem cells (NSCs), with the potential for multidirectional differentiation, are a potential treatment for SCI. However, it has been demonstrated that NSCs primarily differentiated into astrocytes rather than neurons due to the inflammatory microenvironment, and the current challenge remains to direct the differentiation of NSCs into neurons in the lesion site. It was reported that the microtubule-stabilizing agent paclitaxel (PTX) was able to promote the differentiation of NSCs into neurons rather than astrocytes after SCI. SDF-1α can recruit NSCs and thus guide the migration of stem cells. In this study, we developed a functional collagen scaffold by loading SDF-1α and nanoparticle-encapsulated PLGA-PTX into a 3D collagen porous scaffold, allowing for slow release of PTX. When the functional scaffolds were implanted into the injury site, it provided a neural regeneration conduit channel for the migration of NSCs and neuronal differentiation. Neural regeneration promoted the recovery of motor function and reduced glial scar formation after SCI. In conclusion, a 3D collagen porous scaffold combined with PLGA-PTX and SDF-1α is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Zhixiang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, China
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Panpan Xu
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Bingxu Ma
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Huihui Zhang
- Department of Oncology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Liangmin Fu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ou
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| |
Collapse
|
4
|
Mozhdehbakhsh Mofrad Y, Shamloo A. The effect of conductive aligned fibers in an injectable hydrogel on nerve tissue regeneration. Int J Pharm 2023; 645:123419. [PMID: 37717716 DOI: 10.1016/j.ijpharm.2023.123419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Injectable hydrogels are a promising treatment option for nervous system injuries due to the difficulty to replace lost cells and nervous factors but research on injectable conductive hydrogels is limited and these scaffolds have poor electromechanical properties. This study developed a chitosan/beta-glycerophosphate/salt hydrogel and added conductive aligned nanofibers (polycaprolactone/gelatin/single-wall carbon nanotube (SWCNT)) for the first time and inspired by natural nerve tissue to improve their biochemical and biophysical properties. The results showed that the degradation rate of hydrogels is proportional to the regrowth of axons and these hydrogels' mechanical (hydrogels without nanofibers or SWCNTs and hydrogels containing these additions have the same Young's modulus as the brain and spinal cord or peripheral nerves, respectively) and electrical properties, and the interconnective structure of the scaffolds have the ability to support cells.
Collapse
Affiliation(s)
- Yasaman Mozhdehbakhsh Mofrad
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| |
Collapse
|
5
|
Schöbel L, Boccaccini AR. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications. Acta Biomater 2023; 169:45-65. [PMID: 37532132 DOI: 10.1016/j.actbio.2023.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The application areas of electrically conductive polymers have been steadily growing since their discovery in the late 1970s. Recently, electrically conductive polymers have found their way into biomedicine, allowing the realization of many relevant applications ranging from bioelectronics to scaffolds for tissue engineering. Extracellular matrix components, such as glycosaminoglycans, build an important class of biomaterials that are heavily researched for biomedical applications due to their favorable properties. Due to their highly anionic character and the presence of sulfate groups in glycosaminoglycans, these biomolecules can be employed to functionalize conductive polymers, which enables the tailorability and improvement of cell-material interactions of conductive polymers. This review paper gives an overview of recent research on glycosaminoglycan-modified conductive polymers intended for biomedical applications and discusses the effect of different biological dopants on material characteristics, such as surface roughness, stiffness, and electrochemical properties. Moreover, the key findings of the biological characterization in vitro and in vivo are summarized, and remaining challenges in the field, particularly related to the modification of electrically conductive polymers with glycosaminoglycans to achieve improved functional and biological outcomes, are discussed. STATEMENT OF SIGNIFICANCE: The development of functional biomaterials based on electrically conductive polymers (CPs) for various biomedical applications, such as neural regeneration, drug delivery, or bioelectronics, has been increasingly investigated over the last decades. Recent literature has shown that changes in the synthesis procedure or the chosen dopant could adjust the resulting material characteristics. Hence, an interesting approach lies in using natural biomolecules as dopants for CPs to tailor the biological outcome. This review comprehensively summarizes the state of the art in the field of glycosaminoglycan-modified electrically conductive polymers for the first time, particularly highlighting the effect of the chosen dopant on material characteristics, such as surface morphology or stiffness, electrochemical properties, and consequently, cell-material interactions.
Collapse
Affiliation(s)
- Lisa Schöbel
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
In Vitro 3D Modeling of Neurodegenerative Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010093. [PMID: 36671665 PMCID: PMC9855033 DOI: 10.3390/bioengineering10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The study of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis) is very complex due to the difficulty in investigating the cellular dynamics within nervous tissue. Despite numerous advances in the in vivo study of these diseases, the use of in vitro analyses is proving to be a valuable tool to better understand the mechanisms implicated in these diseases. Although neural cells remain difficult to obtain from patient tissues, access to induced multipotent stem cell production now makes it possible to generate virtually all neural cells involved in these diseases (from neurons to glial cells). Many original 3D culture model approaches are currently being developed (using these different cell types together) to closely mimic degenerative nervous tissue environments. The aim of these approaches is to allow an interaction between glial cells and neurons, which reproduces pathophysiological reality by co-culturing them in structures that recapitulate embryonic development or facilitate axonal migration, local molecule exchange, and myelination (to name a few). This review details the advantages and disadvantages of techniques using scaffolds, spheroids, organoids, 3D bioprinting, microfluidic systems, and organ-on-a-chip strategies to model neurodegenerative diseases.
Collapse
|
7
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Guan S, Wang Y, Xie F, Wang S, Xu W, Xu J, Sun C. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238326. [PMID: 36500418 PMCID: PMC9740948 DOI: 10.3390/molecules27238326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Tissue engineering scaffolds provide biological and physiochemical cures to guide tissue recovery, and electrical signals through the electroactive materials possess tremendous potential to modulate the cell fate. In this study, a novel electroactive hydrogel scaffold was fabricated by assembling poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles on a carboxymethyl chitosan/gelatin (CMCS/Gel) composite hydrogel surface via in situ chemical polymerization. The chemical structure, morphology, conductivity, porosity, swelling rate, in vitro biodegradation, and mechanical properties of the prepared hydrogel samples were characterized. The adhesion, proliferation, and differentiation of neural stem cells (NSCs) on conductive hydrogels were investigated. The CMCS/Gel-PEDOT hydrogels exhibited high porosity, excellent water absorption, improved thermal stability, and adequate biodegradability. Importantly, the mechanical properties of the prepared hydrogels were similar to those of brain tissue, with electrical conductivity up to (1.52 ± 0.15) × 10-3 S/cm. Compared to the CMCS/Gel hydrogel, the incorporation of PEDOT nanoparticles significantly improved the adhesion of NSCs, and supported long-term cell growth and proliferation in a three-dimensional (3D) microenvironment. In addition, under the differentiation condition, the conductive hydrogel also significantly enhanced neuronal differentiation with the up-regulation of β-tubulin III expression. These results suggest that CMCS/Gel-PEDOT hydrogels may be an attractive conductive substrate for further studies on neural tissue repair and regeneration.
Collapse
Affiliation(s)
- Shui Guan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Correspondence: (S.G.); (J.X.); (C.S.)
| | - Yangbin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Feng Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuping Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
- Correspondence: (S.G.); (J.X.); (C.S.)
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Correspondence: (S.G.); (J.X.); (C.S.)
| |
Collapse
|
9
|
Wang H, Yu H, Zhou X, Zhang J, Zhou H, Hao H, Ding L, Li H, Gu Y, Ma J, Qiu J, Ma D. An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting. Front Bioeng Biotechnol 2022; 10:905438. [PMID: 35646886 PMCID: PMC9130719 DOI: 10.3389/fbioe.2022.905438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
As a microenvironment where cells reside, the extracellular matrix (ECM) has a complex network structure and appropriate mechanical properties to provide structural and biochemical support for the surrounding cells. In tissue engineering, the ECM and its derivatives can mitigate foreign body responses by presenting ECM molecules at the interface between materials and tissues. With the widespread application of three-dimensional (3D) bioprinting, the use of the ECM and its derivative bioinks for 3D bioprinting to replicate biomimetic and complex tissue structures has become an innovative and successful strategy in medical fields. In this review, we summarize the significance and recent progress of ECM-based biomaterials in 3D bioprinting. Then, we discuss the most relevant applications of ECM-based biomaterials in 3D bioprinting, such as tissue regeneration and cancer research. Furthermore, we present the status of ECM-based biomaterials in current research and discuss future development prospects.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huaqing Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xia Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jilong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Hongrui Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Haitong Hao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Lina Ding
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huiying Li
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yanru Gu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Junchi Ma
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Depeng Ma
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
10
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
11
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
12
|
Mehra L, Mehra S, Tiwari N, Singh T, Rawat H, Belagavi S, Jaimini A, Mittal G. Fabrication, characterization and evaluation of the efficacy of gelatin/hyaluronic acid microporous scaffolds suffused with aloe-vera in a rat burn model. J Biomater Appl 2021; 36:1346-1358. [PMID: 34873947 DOI: 10.1177/08853282211061821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Burn induced injuries are commonly encountered in civilian and military settings, leading to severe morbidity and mortality. Objective of this study was to construct microporous bioactive scaffolds of gelatin-hyaluronic acid suffused with aloe-vera gel (Gela/HA/AvG), and to evaluate their efficacy in healing partial-thickness burn wounds. Scaffolds were characterized using Fourier transform-infrared spectroscopy, Scanning electron microscopy, and Thermo-gravimetric analysis to understand intermolecular interactions and morphological characteristics. In-vitro fluid uptake ability and hemolytic index of test scaffolds were also determined. In-vitro collagenase digestion was done to assess biodegradability of scaffolds. Wound retraction studies were carried out in Sprague Dawley rats inflicted with partial-thickness burn wounds to assess and compare efficacy of optimized scaffolds with respect to negative and positive control groups. In-vivo gamma scintigraphy using Technetium-99m labeled Immunoglobulin-G (99mTc-IgG) as imaging agent was also performed to validate efficacy results. Histological and immunohistochemical comparison between groups was also made. Scaffolds exhibited mircoporous structure, with pore size getting reduced from 41.3 ± 4.3 µm to 30.49 ± 5.7 µm when gelatin conc. was varied from 1% to 5%. Optimized test scaffolds showed sustained in-vitro swelling behavior, were biodegradable and showed hemolytic index in range of 2.4-4.3%. Wound retraction study along with in-vivo gamma scintigraphy indicated that Gela/HA/AvG scaffolds were not only able to reduce local inflammation faster but also accelerated dermis regeneration. Immunohistochemical analysis, in terms of expression levels of epidermal growth factor and fibroblast growth factor-2 also corroborated in-vivo efficacy findings. Gela/HA/AvG scaffolds, therefore, can potentially be developed into an effective dermal regeneration template for partial-thickness burn wounds.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Smritee Mehra
- Department of Biotechnology, RinggoldID:231547Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Nidhi Tiwari
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Thakuri Singh
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Harish Rawat
- Department of Nuclear Medicine, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Shreeshail Belagavi
- Department of Cytopathology, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Abhinav Jaimini
- Department of Nuclear Medicine, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gaurav Mittal
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
13
|
Liu S, Xie YY, Wang LD, Tai CX, Chen D, Mu D, Cui YY, Wang B. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 2021; 16:2284-2292. [PMID: 33818514 PMCID: PMC8354107 DOI: 10.4103/1673-5374.310698] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation, the passage of nutrients and oxygen, and the discharge of metabolites. In this study, a porous collagen scaffold with axially-aligned luminal conduits was prepared. In vitro biocompatibility analysis of the collagen scaffold revealed that it enhances the activity of neural stem cells and promotes cell extension, without affecting cell differentiation. The collagen scaffold loaded with neural stem cells improved the hindlimb motor function in the rat model of T8 complete transection and promoted nerve regeneration. The collagen scaffold was completely degraded in vivo within 5 weeks of implantation, exhibiting good biodegradability. Rectal temperature, C-reactive protein expression and CD68 staining demonstrated that rats with spinal cord injury that underwent implantation of the collagen scaffold had no notable inflammatory reaction. These findings suggest that this novel collagen scaffold is a good carrier for neural stem cell transplantation, thereby enhancing spinal cord repair following injury. This study was approved by the Animal Ethics Committee of Nanjing Drum Tower Hospital (the Affiliated Hospital of Nanjing University Medical School), China (approval No. 2019AE02005) on June 15, 2019.
Collapse
Affiliation(s)
- Shuo Liu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Liu-Di Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chen-Xu Tai
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Dong Chen
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Dan Mu
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan-Yan Cui
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Correspondence to: Bin Wang, .
| |
Collapse
|
14
|
Shen CC, Yang MY, Chang KB, Tseng CH, Yang YP, Yang YC, Kung ML, Lai WY, Lin TW, Hsieh HH, Hung HS. Fabrication of hyaluronic acid-gold nanoparticles with chitosan to modulate neural differentiation of mesenchymal stem cells. J Chin Med Assoc 2021; 84:1007-1018. [PMID: 34320517 DOI: 10.1097/jcma.0000000000000589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chitosan (Chi) is a natural material which has been widely used in neural applications due to possessing better biocompatibility. In this research study, a novel of nanocomposites film based on Chi with hyaluronic acid (HA), combined with varying amounts of gold nanoparticles (AuNPs), was created resulting in pure Chi, Chi-HA, Chi-HA-AuNPs (25 ppm), and Chi-HA-AuNPs (50 ppm). METHODS This study focused on evaluating their effects on mesenchymal stem cell (MSC) viability, colony formation, and biocompatibility. The surface morphology and chemical position were characterized through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), SEM, and contact-angle assessment. RESULTS When seeding MSCs on Chi-HA-AuNPs (50 ppm), the results showed high cell viability, biocompatibility, and the highest colony formation ability. Meanwhile, the evidence showed that Chi-HA-Au nanofilm was able to inhibit nestin and β-tubulin expression of MSCs, as well as inhibit the ability of neurogenic differentiation. Furthermore, the results of matrix metalloproteinase 2/9 (MMP2/9) expression in MSCs were also significantly higher in the Chi-HA-AuNP (50 ppm) group, guiding with angiogenesis and wound healing abilities. In addition, in our rat model, both capsule thickness and collagen deposition were the lowest in Chi-HA-AuNPs (50 ppm). CONCLUSION Thus, in view of the in vitro and in vivo results, Chi-HA-AuNPs (50 ppm) could not only maintain the greatest stemness properties and regulate the neurogenic differentiation ability of MSCs, but was able to also induce the least immune response. Herein, Chi-HA-Au 50 ppm nanofilm holds promise as a suitable material for nerve regeneration engineering.
Collapse
Affiliation(s)
- Chiung-Chyi Shen
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan, ROC
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Meng-Yin Yang
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, ROC
| | - Chia-Hsuan Tseng
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chin Yang
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, ROC
- Translational Medicine Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
15
|
Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Zhang Y, Sang S, Han Y. Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1915783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rong Cheng
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanyan Cao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, PR China
| | - Yayun Yan
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Zhizhong Shen
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yajing Zhao
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yixia Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Shengbo Sang
- College of Information and Computer, MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, PR China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan, PR China
| |
Collapse
|
16
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
17
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
19
|
Arafa IM, Shatnawi MY, Abdallah MH, Algharaibeh ZA. Grafting of glycine, alanine, serine, and threonine on cellulose membranes and their role in regulating the uniport, symport, and antiport permeation of glucose. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isam M. Arafa
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Mazin Y. Shatnawi
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad H. Abdallah
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
20
|
3D bioprinting applications in neural tissue engineering for spinal cord injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110741. [PMID: 32204049 DOI: 10.1016/j.msec.2020.110741] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.
Collapse
|
21
|
Mansouri N, Al-Sarawi SF, Mazumdar J, Losic D. Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering. RSC Adv 2019; 9:36838-36848. [PMID: 35539075 PMCID: PMC9075535 DOI: 10.1039/c9ra07481c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022] Open
Abstract
Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative and realistic neural interactions and network formation. Hence, there is a need to develop three-dimensional (3D) bioscaffolds to facilitate culturing cells with matched microenvironment for cell growth and interconnected pores for penetration and migration of cells. Herein, we report the synthesis and characterization of 3D composite bioscaffolds based on graphene-biopolymer with porous structure and improved performance for tissue engineering. A simple, eco-friendly synthetic method is introduced and optimized for synthesis of this hybrid fibrous scaffold by combining Graphene Oxide (GO) and Sodium Alginate (Na-ALG) which are specifically selected to match the mechanical strength of the central nervous system (CNS) tissue and provide porous structure for connective tissue engineering. Properties of the developed scaffold in terms of the structure, porosity, thermal stability, mechanical properties, and electrical conductivity are presented. These properties were optimised through key synthesis conditions including GO concentrations, reduction process and crosslinking time. In contrast to other studies, the presented structure maintains its stability in aqueous media and uses a bio-friendly reducing agent which enable the structure to enhance neuron cell interactions and act as nerve conduits for neurological diseases.
Collapse
Affiliation(s)
- Negar Mansouri
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Said F Al-Sarawi
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Jagan Mazumdar
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, University of Adelaide Adelaide Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, University of Adelaide Adelaide Australia
| |
Collapse
|
22
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 2019; 14:1352-1363. [PMID: 30964053 PMCID: PMC6524500 DOI: 10.4103/1673-5374.253512] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.
Collapse
Affiliation(s)
- Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Res Bull 2019; 150:240-249. [DOI: 10.1016/j.brainresbull.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
|
25
|
Hoveizi E, Ebrahimi‐Barough S. Embryonic stem cells differentiated into neuron‐like cells using SB431542 small molecule on nanofibrous PLA/CS/Wax scaffold. J Cell Physiol 2019; 234:19565-19573. [DOI: 10.1002/jcp.28554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
26
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
28
|
3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:890-901. [DOI: 10.1016/j.msec.2018.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
|
29
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 2018; 171:125-150. [DOI: 10.1016/j.pneurobio.2018.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
30
|
Suo H, Zhang D, Yin J, Qian J, Wu ZL, Fu J. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:612-620. [PMID: 30184788 DOI: 10.1016/j.msec.2018.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/19/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023]
Abstract
Gelatin and chitosan (CS) are widely used natural biomaterials for tissue engineering scaffolds, but the poor mechanical properties of pure gelatin or CS hydrogels become a big obstacle that limits their use as scaffolds, especially in load-bearing tissues. This study provided a novel mechanism of forming interpenetrating network (IPN) of gelatin methacryloyl (GelMA) and CS hydrogels by covalent bonds and hydrophobic interactions through photocrosslinking and basification, respectively. By characterization of the compressive and tensile moduli, ultimate tensile stress and strain, it was found that semi-IPN and IPN structure can greatly enhance the mechanical properties of GelMA-CS hydrogels compared to the single network CS or GelMA. Moreover, the increase of either GelMA or CS concentration can strengthen the hydrogel network. Then, the swelling, enzymatic degradation, and morphology of GelMA-CS hydrogels were also systematically investigated. The excellent biocompatibility of GelMA-CS hydrogels was demonstrated by large spreading area of bone mesenchymal stem cells on hydrogel surfaces when CS concentration was <2% (w/v). According to this study, the multiple requirements of properties can be fulfilled by carefully selecting the GelMA and CS compositions for IPN hydrogels.
Collapse
Affiliation(s)
- Hairui Suo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deming Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Zi Liang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Zhao Y, Wang Y, Niu C, Zhang L, Li G, Yang Y. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res A 2018; 106:1951-1964. [DOI: 10.1002/jbm.a.36393] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yinxin Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| | - Changmei Niu
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education; Nantong University; Nantong 226001 People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University; Nantong 226001 People's Republic of China
| |
Collapse
|
32
|
Azizian S, Khatami F, Modaresifar K, Mosaffa N, Peirovi H, Tayebi L, Bahrami S, Redl H, Niknejad H. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:876-884. [DOI: 10.1080/21691401.2018.1438452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Azizian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Khatami
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Khashayar Modaresifar
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Habibollah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
33
|
Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 2018; 156:159-171. [DOI: 10.1016/j.biomaterials.2017.11.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022]
|
34
|
Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:501-525. [DOI: 10.1007/978-981-13-0947-2_27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Xu C, Guan S, Wang S, Gong W, Liu T, Ma X, Sun C. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519441 DOI: 10.1016/j.msec.2017.11.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electroconductive hydrogels with excellent electromechanical properties have become crucial for biomedical applications. In this study, we developed a conductive composite hydrogel via in-situ chemical polymerization based on carboxymethyl chitosan (CMCS), as a biodegradable base macromolecular network, and poly(3,4-ethylenedioxythiophene) (PEDOT), as a conductive polymer layer. The physicochemical and electrochemical properties of conductive hydrogels (PEDOT/CMCS) with different contents of PEDOT polymer were analyzed. Cell viability and proliferation of neuron-like rat phaeochromocytoma (PC12) cells on these three-dimensional conductive hydrogels were evaluated in vitro. As results, the prepared semi-interpenetrating network hydrogels were shown to consist of up to 1825±135wt% of water with a compressive modulus of 9.59±0.49kPa, a porosity of 93.95±1.03% and an electrical conductivity of (4.68±0.28)×10-3S·cm-1. Cell experiments confirmed that PEDOT/CMCS hydrogels not only had no cytotoxicity, but also supported cell adhesion, viability and proliferation. These results demonstrated that the incorporation of conductive PEDOT component into CMCS hydrogels endowed the hydrogels with enhanced mechanical strength, conductivity and kept the biocompatibility. Thus, the attractive performances of these composite hydrogels would make them suitable for further neural tissue engineering application, such as nerve regeneration scaffold materials.
Collapse
Affiliation(s)
- Chao Xu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changkai Sun
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
36
|
Ayala-Caminero R, Pinzón-Herrera L, Martinez CAR, Almodovar J. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration. MRS COMMUNICATIONS 2017; 7:391-415. [PMID: 29515936 PMCID: PMC5836791 DOI: 10.1557/mrc.2017.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 05/09/2023]
Abstract
Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures.
Collapse
Affiliation(s)
- Radamés Ayala-Caminero
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Luis Pinzón-Herrera
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayaguez, Puerto Rico, 00681-9000, USA
| | - Carol A Rivera Martinez
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Jorge Almodovar
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| |
Collapse
|
37
|
Murphy AR, Laslett A, O'Brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 2017; 54:1-20. [PMID: 28259835 DOI: 10.1016/j.actbio.2017.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
Collapse
Affiliation(s)
- Ashley R Murphy
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Andrew Laslett
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| |
Collapse
|
38
|
|
39
|
Wang S, Sun C, Guan S, Li W, Xu J, Ge D, Zhuang M, Liu T, Ma X. Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 2017; 5:4774-4788. [DOI: 10.1039/c7tb00608j] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrically conductive scaffold was prepared by assembling PEDOT on a chitosan/gelatin porous scaffold via in situ interfacial polymerization.
Collapse
Affiliation(s)
- Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Changkai Sun
- Department of Biomedical Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Wenfang Li
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Jianqiang Xu
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- People's Republic of China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Meiling Zhuang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| |
Collapse
|
40
|
Wang S, Guan S, Xu J, Li W, Ge D, Sun C, Liu T, Ma X. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering. Biomater Sci 2017; 5:2024-2034. [DOI: 10.1039/c7bm00633k] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Jianqiang Xu
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- People's Republic of China
| | - Wenfang Li
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Changkai Sun
- Department of Biomedical Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| |
Collapse
|
41
|
Buriuli M, Verma D. Polyelectrolyte Complexes (PECs) for Biomedical Applications. ADVANCED STRUCTURED MATERIALS 2017. [DOI: 10.1007/978-981-10-3328-5_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:308-316. [PMID: 27987712 DOI: 10.1016/j.msec.2016.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Conducting polymer, as a "smart" biomaterial, has been increasingly used to construct tissue engineered scaffold for nerve tissue regeneration. In this study, a novel porous conductive scaffold was prepared by incorporating conductive hyaluronic acid (HA) doped-poly(3,4-ethylenedioxythiophene) (PEDOT-HA) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physicochemical characteristics of Cs/Gel scaffold with 0-10wt% PEDOT-HA were analyzed and the results indicated that the incorporation of PEDOT-HA into scaffold increased the electrical and mechanical properties while decreasing the porosity and water absorption. Moreover, in vitro biodegradation of scaffold displayed a declining trend with the PEDOT-HA content increased. About the biocompatibility of conductive scaffold, neuron-like rat phaeochromocytoma (PC12) cells were cultured in scaffold to evaluate cell adhesion and growth. 8% PEDOT-HA/Cs/Gel scaffold had a higher cell adhesive efficiency and cell viability than the other conductive scaffolds. Furthermore, cells in the scaffold with 8wt% PEDOT-HA expressed higher synapse growth gene of GAP43 and SYP compared with Cs/Gel control group. These results suggest that 8%PEDOT-HA/Cs/Gel scaffold is an attractive cell culture conductive substrate which could support cell adhesion, survival, proliferation, and synapse growth for the application in nerve tissue regeneration.
Collapse
|
43
|
Chung S, Ercan B, Roy AK, Webster TJ. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth. Front Physiol 2016; 7:297. [PMID: 27471473 PMCID: PMC4943957 DOI: 10.3389/fphys.2016.00297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/28/2016] [Indexed: 01/26/2023] Open
Abstract
Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics.
Collapse
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
| | - Batur Ercan
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
| | - Amit K. Roy
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical UniversityWenzhou, China
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical UniversityWenzhou, China
- Center of Excellence for Advanced Materials Research, King Abdulaziz UniversityJeddah, Saudi Arabia
- Department of Bioengineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
44
|
Kong Y, Xu R, Darabi MA, Zhong W, Luo G, Xing MM, Wu J. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. Int J Nanomedicine 2016; 11:2543-55. [PMID: 27354789 PMCID: PMC4907708 DOI: 10.2147/ijn.s102861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polymeric ultrathin membranes that are compatible with cells offer tremendous advantages for tissue engineering. In this article, we report a free-standing nanomembrane that was developed using a layer-by-layer self-assembly technique with a safe and sacrificial substrate method. After ionization, two oppositely charged polyelectrolytes, alginate and chitosan, were alternately deposited on a substrate of a solidified gelatin block to form an ultrathin nanomembrane. The space between the two adjacent layers was ∼200 nm. The thickness of the nanomembrane was proportional to the number of layers. The temperature-sensitive gelatin gel served as a sacrificial template at 37°C. The free-standing nanomembrane promoted bone marrow stem cell adhesion and proliferation. Fluorescence-activated cell sorting was used to analyze green-fluorescent-protein-positive mesenchymal stem cells from the wounds, which showed a significantly high survival and proliferation from the nanomembrane when cells were transplanted to mouse dorsal skin that had a full-thickness burn. The bone-marrow-stem-cell-loaded nanomembrane also accelerated wound contraction and epidermalization. Therefore, this methodology provides a fast and facile approach to construct free-standing ultrathin scaffolds for tissue engineering. The biocompatibility and free-standing nature of the fabricated nanomembrane may be particularly useful for stem cell delivery and wound healing.
Collapse
Affiliation(s)
- Yi Kong
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Third Military Medical University, Chongqing, People's Republic of China; Department of Mechanical Engineering, Biochemistry and Medical Genetics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Rui Xu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Third Military Medical University, Chongqing, People's Republic of China
| | - Mohammad Ali Darabi
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Wen Zhong
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Third Military Medical University, Chongqing, People's Republic of China
| | - Malcolm Mq Xing
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Third Military Medical University, Chongqing, People's Republic of China; Department of Mechanical Engineering, Biochemistry and Medical Genetics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Wu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
45
|
Knowlton S, Cho Y, Li XJ, Khademhosseini A, Tasoglu S. Utilizing stem cells for three-dimensional neural tissue engineering. Biomater Sci 2016; 4:768-84. [DOI: 10.1039/c5bm00324e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional neural tissue engineering has significantly advanced the development of neural disease models and replacement tissues for patients by leveraging the unique capabilities of stem cells.
Collapse
Affiliation(s)
| | - Yongku Cho
- Department of Chemical & Biomolecular Engineering
- University of Connecticut
- Storrs
- USA
| | - Xue-Jun Li
- Department of Neuroscience
- University of Connecticut Health Center
- Farmington
- USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering
- Department of Medicine
- Brigham and Women's Hospital Harvard Medical School
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology
- Cambridge
| | - Savas Tasoglu
- Department of Biomedical Engineering
- University of Connecticut
- Storrs
- USA
- Department of Mechanical Engineering
| |
Collapse
|
46
|
Baniasadi H, Ramazani S. A A, Mashayekhan S, Farani MR, Ghaderinezhad F, Dabaghi M. Design, Fabrication, and Characterization of Novel Porous Conductive Scaffolds for Nerve Tissue Engineering. INT J POLYM MATER PO 2015; 64:969-977. [DOI: 10.1080/00914037.2015.1038817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
|
48
|
Duan S, Feng P, Gao C, Xiao T, Yu K, Shuai C, Peng S. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering. MATERIALS (BASEL, SWITZERLAND) 2015; 8:1162-1175. [PMID: 28787994 PMCID: PMC5455430 DOI: 10.3390/ma8031162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
CaO-Al₂O₃-SiO₂ (CAS) as a liquid phase was introduced into hydroxyapatite (HAp) to prepare bone scaffolds. The effects of the CAS content (1, 2, 3, 4 and 5 wt%) on microstructure and mechanical properties of HAp ceramics were investigated. The optimal compression strength, fracture toughness and Vickers hardness reached 22.22 MPa, 1.68 MPa·m1/2 and 4.47 GPa when 3 wt% CAS was added, which were increased by 105%, 63% and 11% compared with those of HAp ceramics without CAS, respectively. The improvement of the mechanical properties was attributed to the improved densification, which was caused by the solid particle to rearrange during liquid phase sintering. Moreover, simulated body fluid (SBF) study indicated the HAp ceramics could maintain the mechanical properties and form a bone-like apatite layer when they were immersed in SBF. Cell culture was used to evaluate biocompatibility of the HAp ceramics. The results demonstrated MG-63 cells adhered and spread well.
Collapse
Affiliation(s)
- Songlin Duan
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Tao Xiao
- Orthopedic Biomedical Materials Institute, Central South University, Changsha 410083, China.
- Department of Orthopedics, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Kun Yu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- Orthopedic Biomedical Materials Institute, Central South University, Changsha 410083, China.
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
- School of Basic Medical Science, Central South University, Changsha 410078, China.
| |
Collapse
|
49
|
Baniasadi H, Ramazani S A A, Mashayekhan S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 2015; 74:360-366. [PMID: 25553968 DOI: 10.1016/j.ijbiomac.2014.12.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay, respectively. In summary, this work supports the use of a porous conductive chitosan/gelatin/PAG scaffold with a low amount of PAG (2.5 wt.%) as a suitable material having proper conductivity, mechanical properties and biocompatibility that may be appropriate for different biomedical applications such as scaffold material in tissue engineering for neural repair or other biomedical devices that require electroactivity.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Ramazani S A
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
50
|
Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 2015; 3:8224-8249. [DOI: 10.1039/c5tb01370d] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fabrication of biomaterials scaffolds using various methods and techniques is discussed, utilising biocompatible, biodegradable and stimuli-responsive polymers and their composites. This review covers the lithography and printing techniques, self-organisation and self-assembly methods for 3D structural scaffolds generation, and smart hydrogels, for tissue regeneration and medical devices.
Collapse
Affiliation(s)
- Ferdous Khan
- Senior Polymer Chemist
- ECOSE-Biopolymer
- Knauf Insulation Limited
- St. Helens
- UK
| | - Masaru Tanaka
- Biomaterials Science Group
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
| | - Sheikh Rafi Ahmad
- Centre for Applied Laser Spectroscopy
- CDS
- DEAS
- Cranfield University
- Swindon
| |
Collapse
|