1
|
Szyk P, Czarczynska-Goslinska B, Mlynarczyk DT, Ślusarska B, Kocki T, Ziegler-Borowska M, Goslinski T. Polymer-Based Nanoparticles as Drug Delivery Systems for Purines of Established Importance in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2647. [PMID: 37836288 PMCID: PMC10574807 DOI: 10.3390/nano13192647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
2
|
Dai Y, Wu X, Yin Y, Dai H. GSH/enzyme-responsive 2-sulfonyl-1-methylimidazole prodrug for enhanced transdermal drug delivery and therapeutic efficacy against hyperthyroidis. Int J Pharm 2022; 617:121600. [PMID: 35182701 DOI: 10.1016/j.ijpharm.2022.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/25/2022] [Accepted: 02/13/2022] [Indexed: 11/19/2022]
Abstract
Novel GSH/enzyme-responsive anti-hyperthyroidism prodrugs designed for transdermal delivery of 2-sulfonyl-1- methylimidazole (MMI) were synthesized by a Michael addition reaction of MMI with propiolic acid (PA) followed by esterification with three long chain fatty alcohols and their structures were characterized by 1H-NMR, 13C-NMR and mass spectrometry. Their maximum steady state flux through rat skin in the PG/W solution was found to be more than 37-times faster than that of MMI. The result may be attributed to the improved lipophilicity of prodrug and rapid bioconversion. The prodrugs were hydrolyzed by esterase on passing through the skin and appeared mainly as intermediate MMI-PA in the receiver compartment and accompanied by a small amount of MMI and intact prodrug. The prodrugs did not release any MMI in the media without GSH or with 100 µM GSH, while the obvious MMI release could be observed within 6.4 h in the media containing 2 mM and 10 mM GSH, and their maximum cumulative release rates reached 95.07% for lauryl alcohol ester prodrug (MMI-PA-OLa). MMI-PA-OLa exhibited a significant inhibition effect on lactoperoxidase (LPO) after being incubated in millimolar GSH media, whose inhibition rate was very similar to that of free MMI with an equivalent dose. These results suggested that MMI-PA-OLa could pass efficiently through the skin and release MMI in response to the intracellular environment.
Collapse
Affiliation(s)
- Yue Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
3
|
Fumoto S, Nishida K. Co-delivery Systems of Multiple Drugs Using Nanotechnology for Future Cancer Therapy. Chem Pharm Bull (Tokyo) 2021; 68:603-612. [PMID: 32611997 DOI: 10.1248/cpb.c20-00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer treatments have improved significantly during the last decade but are not yet satisfactory. Combination therapy is often administered to improve efficacy and safety. Drug delivery systems can also improve efficacy and safety. To control the spatiotemporal distribution of drugs, nanotechnology involving liposomes, solid lipid nanoparticles, and polymeric micelles has been developed. Co-delivery systems of multiple drugs are a promising approach to combat cancer. Synergistic effects and reduced side effects are expected from the use of co-delivery systems. In this review, we summarize various co-delivery systems for multiple drugs, including small-molecule drugs, nucleic acids, genes, and proteins. Co-delivery of drugs with different properties is relatively difficult, but some researchers have succeeded in developing such co-delivery systems. Environment-responsive carrier designs can control the release of cargos. Although their preparation is more complicated than that of mono-delivery systems, co-delivery systems can simplify clinical procedures and improve patient QOL.
Collapse
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
4
|
Sarwar MS, Ghaffar A, Huang Q, Zafar MS, Usman M, Latif M. Controlled-release behavior of ciprofloxacin from a biocompatible polymeric system based on sodium alginate/poly(ethylene glycol) mono methyl ether. Int J Biol Macromol 2020; 165:1047-1054. [DOI: 10.1016/j.ijbiomac.2020.09.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
|
5
|
Sarwar MS, Ghaffar A, Islam A, Yasmin F, Oluz Z, Tuncel E, Duran H, Qaiser AA. Controlled drug release behavior of metformin hydrogen chloride from biodegradable films based on chitosan/poly(ethylene glycol) methyl ether blend. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Xu W, Li G, Long H, Fu G, Pu L. Glutathione responsive poly(HPMA) conjugate nanoparticles for efficient 6-MP delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj02582k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GSH-sensitive poly(HPMA)–PTA was developed and its antitumor effect on HepG2 cells was evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Guichen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Haitao Long
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Guorui Fu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agriculture University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
7
|
Jia Z, Wang X, Wei X, Zhao G, Foster KW, Qiu F, Gao Y, Yuan F, Yu F, Thiele GM, Bronich TK, O’Dell JR, Wang D. Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects. ACS NANO 2018; 12:7663-7681. [PMID: 29965725 PMCID: PMC6117746 DOI: 10.1021/acsnano.8b01249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/27/2023]
Abstract
Nephritis is one of the major complications of systemic lupus erythematosus. While glucocorticoids (GCs) are frequently used as the first-line treatment for lupus nephritis (LN), long-term GC usage is often complicated by severe adverse effects. To address this challenge, we have developed a polyethylene glycol-based macromolecular prodrug (ZSJ-0228) of dexamethasone, which self-assembles into micelles in aqueous media. When compared to the dose equivalent daily dexamethasone 21-phosphate disodium (Dex) treatment, monthly intravenous administration of ZSJ-0228 for two months significantly improved the survival of lupus-prone NZB/W F1 mice and was much more effective in normalizing proteinuria, with clear histological evidence of nephritis resolution. Different from the dose equivalent daily Dex treatment, monthly ZSJ-0228 administration has no impact on the serum anti-double-stranded DNA (anti-dsDNA) antibody level but can significantly reduce renal immune complex deposition. No significant systemic toxicities of GCs ( e. g., total IgG reduction, adrenal gland atrophy, and osteopenia) were found to be associated with ZSJ-0228 treatment. In vivo imaging and flow cytometry studies revealed that the fluorescent-labeled ZSJ-0228 primarily distributed to the inflamed kidney after systemic administration, with renal myeloid cells and proximal tubular epithelial cells mainly responsible for its kidney retention. Collectively, these data suggest that the ZSJ-0228's potent local anti-inflammatory/immunosuppressive effects and improved safety may be attributed to its nephrotropicity and cellular sequestration at the inflamed kidney tissues. Pending further optimization, it may be developed into an effective and safe therapy for improved clinical management of LN.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaobei Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xin Wei
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Gang Zhao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Kirk W. Foster
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Qiu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yangyang Gao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Geoffrey M. Thiele
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Tatiana K. Bronich
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - James R. O’Dell
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Dong Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
8
|
Wan Y, Bu Y, Liu J, Yang J, Cai W, Yin Y, Xu W, Xu P, Zhang J, He M. pH and reduction-activated polymeric prodrug nanoparticles based on a 6-thioguanine-dialdehyde sodium alginate conjugate for enhanced intracellular drug release in leukemia. Polym Chem 2018. [DOI: 10.1039/c8py00577j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis schematics of DSA and 6-TG-DSA as well as processes of PPN self-assembly and its pH/GSH dual stimuli-response release of the conjugated 6-TG.
Collapse
|
9
|
Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z. Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules 2017; 18:3207-3214. [DOI: 10.1021/acs.biomac.7b00846] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Qiu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Shen X, Liu X, Li R, Yun P, Li C, Su F, Li S. Biocompatibility of filomicelles prepared from poly(ethylene glycol)-polylactide diblock copolymers as potential drug carrier. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017. [DOI: 10.1080/09205063.2017.1344383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xin Shen
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xue Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Rongye Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Yun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chenglong Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Feng Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Suming Li
- Institut Europeen des Membranes, UMR-5635, Universite de Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
11
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
12
|
Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 2017. [DOI: 10.1039/c7py00979h] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent development and progress for fabrication and applications of aggregation-induced emission polymers through multicomponent reactions have been summarized in this review.
Collapse
Affiliation(s)
- Zi Long
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Liucheng Mao
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yiqun Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
| |
Collapse
|