1
|
Duan X, Yang Y, Zhang T, Zhu B, Wei G, Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon 2024; 10:e25515. [PMID: 38375258 PMCID: PMC10875388 DOI: 10.1016/j.heliyon.2024.e25515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Facing the growing issue of cardiovascular diseases, metallic materials with higher tensile strength and fatigue resistance play an important role in treating diseases. This review lists the advantages and drawbacks of commonly used medical metallic materials for vascular stents. To avoid post-procedural threats such as thrombosis and in-stent restenosis, surface treatments, and coating methods have been used to further improve the biocompatibility of these materials. Surface treatments including laser, plasma treatment, polishing, oxidization, and fluorination can improve biocompatibility by modifying the surface charges, surface morphology, and surface properties of the material. Coating methods based on polymer coatings, carbon-based coatings, and drug-functional coatings can regulate the surface properties, and also serve as an effective barrier to the interaction of metallic biomaterial surfaces with biomolecules, which can be used to improve corrosion resistance and stability, as well as improve their biocompatibility. Biocompatibility serves as the most fundamental property of cardiovascular stents, and maintaining the excellent and stable biocompatibility of cardiovascular stent surfaces is a current research bottleneck. Few reviews have been published on metallic biomaterials as cardiovascular stents and their surface treatments. For the purpose of advancing research on cardiovascular stents, common metal biomaterials, surface treatment methods, and coating methods to improve biocompatibility and comprehensive properties of the materials are described in this review. Finally, we suggest future directions for stent development, including continuously improving the durability and stability of permanent stents, accelerating the development of biodegradable stents, and strengthening feedback to improve the safety and reliability of cardiovascular stents.
Collapse
Affiliation(s)
- Xuejia Duan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yumeng Yang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Benfeng Zhu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| |
Collapse
|
2
|
Zhao J, Liu H, Xue P, Qi Y, Lv Z, Wang R, Wang Y, Sun S. Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132435. [PMID: 37651930 DOI: 10.1016/j.jhazmat.2023.132435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In the process of removing dye wastewater, the membrane surface is susceptible to contamination, resulting in reduced performance and limited dye separation efficiency. A single hydrophilic modification layer is not enough to achieve effective separation of different types of dyes. The present research designed a "double layer protection" method in order to overcome the above deficiencies. A solution of dopamine (DA) coated carbon nanotubes (CNTs-COOH) was covered on the surface of the polyvinylidene fluoride (PVDF) membrane by deposition, followed by grafting a layer of chitosan (CS) polymer brushes on its surface. The spatial double layer structure provides an excellent barrier effect and effectively reduces the contamination of dyes. When filtering different types of dyes, effective filtration of anionic and cationic dyes through the electrostatic effect of the first layer, the adsorption of CNTs in the second layer and the hydration layer of both layers. All membranes have excellent rejection properties. More importantly, the membranes also had good chemical and mechanical stability and their serviceability was not degraded. Therefore, the prepared PVDF-based multi-layer composite membranes behave a potential application prospect in the wastewater purification field.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Peng Xue
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yucheng Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
3
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Fu X, Lei T, Xiao Y, Tang C. Preparation and blood compatibility of polyethersulfone dialysis membrane modified by apixaban as coagulation factor Xa inhibitor. BIOMATERIALS ADVANCES 2022; 139:213012. [PMID: 35882156 DOI: 10.1016/j.bioadv.2022.213012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Blood purification therapy is widely used in the treatment of critically ill patients. However, most dialysis membranes are prone to thrombosis. Activated coagulation factor X (FXa) functions at the intersection of intrinsic, extrinsic, and common coagulation pathways and plays a central role in thrombogenesis. To date, few dialysis membranes that directly inhibit FXa have been reported. We modified a polyethersulfone(PES) membrane using apixaban as an FXa inhibitor and investigated the performance of this membrane (AMPES). The contact angle of the modified membrane was reduced. PWF and retention rates of BSA were increased, demonstrating good hydrophilicity and dialysis performance. Albumin adsorption was reduced from 141.8 ± 15.5 to 114.1 ± 6.9 μg cm-2. Reduced protein adsorption, especially targeted anti-FXa effect, inhibited the activation of intrinsic, extrinsic, and common coagulation pathways, as evidenced by significant prolongations of activated partial thromboplastin time, prothrombin time, and thrombin time by 145.04, 46.84 and 11.46 s, respectively. Furthermore, we determined the FXa concentration of each group, and found that the modified membrane had better anticoagulant performance through the inhibition of FXa. Favorable antiplatelet activity was also demonstrated. Thromboelastogram was used to comprehensively evaluate the anticoagulant and antithrombotic activities of the modified membrane. The R value was increased by 43.1 min, while the reduction in α angle was 42.5°. The coagulation comprehensive index reduction was 34.3. In addition, C3a and C5a were decreased by 15.3 % and 30.4 %, respectively. Furthermore, in vitro cytotoxicity and erythrocyte stability testing as well as in vivo murine experiments demonstrated the biosafety of the modified membrane. These results indicate that the AMPES dialysis membrane has an excellent potential for clinical applications.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Ting Lei
- Powder Metallurgy Institute of Central South University, China
| | - Yuan Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Endocrinology, Xiangya Hospital, Central South University, China
| | - Ci Tang
- College of Electrical and Information Engineering, Changsha University of Science and Technology, China
| |
Collapse
|
5
|
Bose N, Rajappan K, Natesan G, Selvam S. DHNTs assimilated TPU/PEG membrane a new combination for evaluation of in-vitro blood-coagulation. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neeraja Bose
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Kalaivizhi Rajappan
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Gowriboy Natesan
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Sivasankari Selvam
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| |
Collapse
|
6
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Wang C, Lin B, Qiu Y. Enhanced hydrophilicity and anticoagulation of polysulfone materials modified via dihydroxypropyl, sulfonic groups and chitosan. Colloids Surf B Biointerfaces 2021; 210:112243. [PMID: 34861540 DOI: 10.1016/j.colsurfb.2021.112243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
A novel modified polysulfone (PSF) is successfully prepared for hemodialysis by grafting with a well-defined heparin-like polymer, sulfonated dihydroxypropyl chitosan (SDHPCS), which is obtained in proper sequence via alkalization of chitosan, etherification and sulfonation. PSF is modified via chloroacetyl chloride, and then, the chloroacylated polysulfone (CAPSF) with pristine PSF is transformed into CAPSF/PSF blend membrane via the phase inversion, followed introducing amino group into CAPSF on the surface and taking glutaraldehyde as bridge between modified PSF membrane and SDHPCS. The result of 1H NMR spectrum of prepared CAPSF indicates that the degree of the substitution of chloroacetyl group. The SEM, EDS mapping, FTIR and XPS show that SDHPCS-g-PSF membranes are successfully prepared. The hydrophilicity of the membrane modified by SDHPCS is improved obviously, and the contact angle remarkably reduced from 87 ° to below 45°, exhibiting much better hydrophilicity. The hemocompatibility characterizations including BSA adsorption, Plasma recalcification time (PRT), hemolysis ratio (HR), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) also certificates that SDHPCS-g-PSF possesses lower BSA adsorption and enhanced blood compatibility.
Collapse
Affiliation(s)
- Can Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bingxian Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunren Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Ivanova VY, Shurygin ID, Chevela VV, Ajsuvakova OP, Semenov VE, Bezryadin SG. New Aspects of Complex Formation in the Gadolinium(III)–Citric Acid System in Aqueous Solution. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1976759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Valentina Yu. Ivanova
- Department of Inorganic Chemistry, A.M. Butlerov Institute of Chemistry of Kazan Federal University, Kazan, Russia
| | - Igor D. Shurygin
- Department of Inorganic Chemistry, A.M. Butlerov Institute of Chemistry of Kazan Federal University, Kazan, Russia
| | - Vladimir V. Chevela
- Department of Inorganic Chemistry, A.M. Butlerov Institute of Chemistry of Kazan Federal University, Kazan, Russia
| | - Olga P. Ajsuvakova
- All-Russian Research Institute of Phytopathology, Bolshie Vaazemy, Moscow, Russian Federation
| | - Vyacheslav E. Semenov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Sergey G. Bezryadin
- Department of Chemical Technology of Oil, Gas and Ecology Processing, Gubkin Russian State University of Oil and Gas (National Research University), Moscow, Russia
| |
Collapse
|
10
|
Torlopov MA, Drozd NN, Paderin NM, Tarabukin DV, Udoratina EV. Hemocompatibility, biodegradability and acute toxicity of acetylated cellulose nanocrystals of different types in comparison. Carbohydr Polym 2021; 269:118307. [PMID: 34294324 DOI: 10.1016/j.carbpol.2021.118307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Promotion of promising cellulose nanocrystals (CNC) is largely dependent on the relationship between their morphology, surface chemical composition, and supramolecular structure with toxicity, hemocompatibility, and biodegradability. This paper outlines comparative and integrated analysis of the mentioned biocompatibility aspects of partially acetylated rod-, and disc-lake morphology of CNC with crystalline cellulose allomorphs I and II. These data have also included the study of CNC obtained from the sulfuric acid solutions. The aqueous solution of all types of tested CNC has not been toxic to mice after oral administration. Morphology of internal organs has not changed. However, in case of disc-like particles, the kidney mass coefficient noticeably changed. CNC have neither triggered platelet aggregation nor destroyed the red cell membrane. Intravenous administration to rabbits has not affected the plasma clotting time. Rod-like CNC are more resistant, and the disc-like particles are more susceptible to degradation under the influence of cellulases.
Collapse
Affiliation(s)
- Mikhail A Torlopov
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167000, Pervomayskaya str., 48, Syktyvkar, Komi, Russian Federation
| | - Natalya N Drozd
- National Research Center for Hematology, 125167, Novy Zykovsky proyezd, 4, Moscow, Russian Federation
| | - Nikita M Paderin
- Institute of Physiology of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167982, Pervomayskaya str., 50, Syktyvkar, Komi, Russian Federation
| | - Dmitriy V Tarabukin
- Institute of Biology of Federal Research Centre "Komi Science Centre of the Ural Branch of Russian Academy of Sciences", 167982, Kommunisticheskaya str., 28, Syktyvkar, Komi, Russian Federation
| | - Elena V Udoratina
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167000, Pervomayskaya str., 48, Syktyvkar, Komi, Russian Federation.
| |
Collapse
|
11
|
Birajdar MS, Joo H, Koh WG, Park H. Natural bio-based monomers for biomedical applications: a review. Biomater Res 2021; 25:8. [PMID: 33795019 PMCID: PMC8015023 DOI: 10.1186/s40824-021-00208-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, synthetic and semi-synthetic polymer materials have been widely used in various applications. Especially concerning biomedical applications, their biocompatibility, biodegradability, and non-toxicity have increased the interest of researchers to discover and develop new products for the well-being of humanity. Among the synthetic and semi-synthetic materials, the use of natural bio-based monomeric materials presents a possible novel avenue for the development of new biocompatible, biodegradable, and non-toxic products. The purpose of this article is to review the information on the role of natural bio-based monomers in biomedical applications. Increased eco-friendliness, biocompatibility, biodegradability, non-toxicity, and intrinsic biological activity are some of the attributes which make itaconic, succinic, citric, hyaluronic, and glutamic acids suitable potential materials for biomedical applications. Herein, we summarize the most recent advances in the field over the past ten years and specifically highlight new and interesting discoveries in biomedical applications. Natural origin acid-based bio-monomers for biomedical applications.
Collapse
Affiliation(s)
- Mallinath S Birajdar
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Haejin Joo
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Liu W, Fu X, Liu YF, Su T, Peng J. Vorapaxar-modified polysulfone membrane with high hemocompatibility inhibits thrombosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111508. [PMID: 33255066 DOI: 10.1016/j.msec.2020.111508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Hemodialysis therapy is intended for patients suffering from renal insufficiency, pancreatitis, and other serious diseases. Platelets are an important active ingredient in the thrombosis induced by hemodialysis membranes. So far, there are few studies of hemodialysis membranes focusing on the effects of protease-activated receptor 1 (PAR1) activation on the platelet membrane. Among various antithrombotic agents, vorapaxar is a novel PAR1 inhibitor with high efficacy. In this study, we constructed a vorapaxar-modified polysulfone (VMPSf) membrane using immersion-precipitation phase transformation methods and characterized the microstructure in terms of hydrophilicity and mechanical properties. The water contact angle of the VMPSf membrane was 22.45% lower than that of the PSf membrane. A focused determination of platelet morphology was obtained using scanning electron microscopy. Meanwhile, we evaluated the effects of a VMPSf membrane on platelet adhesion. We observed that the VMPSf membrane could reduce the number of adhered platelets without altering their spherical or elliptical shape. The PAR1 levels in VMPSf membranes were 7.4 MFI lower than those in PSf membranes, suggesting that this modified membrane can effectively inhibit platelet activation. Activated partial thromboplastin time (APTT, 5.3 s extension) and thrombin time (TT, 2.1 s extension) reflect good anticoagulant properties. Recalcification time (80.6 s extension) and fibrinogen adsorption (9.9 μg/cm2 reduction) were related to antithrombotic properties. To determine the biosafety of VMPSf membranes, we investigated antianaphylactic and anti-inflammatory properties in vitro and acute toxicity in vivo, it was obvious that C3a and C5a had decreased to 9.6 and 0.8 ng/mL, respectively. The results indicated that the VMPSf membrane has potential for clinical application.
Collapse
Affiliation(s)
- Wei Liu
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China
| | - Xiao Fu
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China.
| | - Yan-Feng Liu
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China
| | - Tao Su
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China
| | - Jie Peng
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China
| |
Collapse
|
13
|
Wang C, Mu C, Lin W, Xiao H. Functional-modified polyurethanes for rendering surfaces antimicrobial: An overview. Adv Colloid Interface Sci 2020; 283:102235. [PMID: 32858408 DOI: 10.1016/j.cis.2020.102235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Antimicrobial surfaces and coatings are rapidly emerging as primary components in functional modification of materials and play an important role in addressing the problems associated with biofouling and microbial infection. Polyurethane (PU) consisting of alternating soft and hard segments has been one of the most important coating materials that have been widely applied in many fields due to its versatile properties. This review attempts to provide insight into the recent advances in antimicrobial polyurethane coatings or surfaces. According to different classes of antimicrobial components along with their antimicrobial mechanism, the synthesis pathways are presented systematically herein to afford polyurethane with antimicrobial properties. Also, the challenges and opportunities of antimicrobial PU coatings and surfaces are also discussed. This review will be beneficial to the exploitation and the further studies of antimicrobial polyurethane materials for a variety of applications.
Collapse
|
14
|
Susanto H, Robbani MH, Istirokhatun T, Firmansyah AA, Rhamadhan RN. Preparation of low-fouling polyethersulfone ultrafiltration membranes by incorporating high-molecular-weight chitosan with the help of a surfactant. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
An ultrasound-controllable release system based on waterborne polyurethane/chitosan membrane for implantable enhanced anticancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109944. [DOI: 10.1016/j.msec.2019.109944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
|
16
|
Tu MM, Xu JJ, Qiu YR. Surface hemocompatible modification of polysulfone membrane via covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan. RSC Adv 2019; 9:6254-6266. [PMID: 35517280 PMCID: PMC9062722 DOI: 10.1039/c8ra10573a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
In this study, acrylic acid (AA) and sulfonated hydroxypropyl chitosan (SHPCS) were covalently grafted on the PSf membrane surface to improve its hemocompatibility.
Collapse
Affiliation(s)
- Ming-Ming Tu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Jing-Jie Xu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Yun-Ren Qiu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| |
Collapse
|
17
|
Recent advance in antibacterial activity of nanoparticles contained polyurethane. J Appl Polym Sci 2018. [DOI: 10.1002/app.46997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Fu X, Ning JP. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:66. [PMID: 29744595 DOI: 10.1007/s10856-018-6054-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Anticoagulation therapy plays a vital role in the prevention of blood clot formation during hemodialysis and hemofiltration, especially for critical care patients. Here, we synthesized a novel argatroban (Arg)-modified polysulfone (PSf) membrane for anticoagulation. Arg was grafted onto the PSF membrane via chemical modification to increase membrane hydrophilicity. Protein adsorption, coagulation, as well as activation of platelets and complement systems were greatly reduced on the Arg-modified PSf membrane. Thus, the recalcification time and the activated partial thrombin time (APTT) were increased after the modification. In comparison with the pristine PSf membrane, the Arg-modified PSf membrane showed better hemocompatibility and anticoagulation properties, indicating its potential for applications in hemodialysis and hemofiltration. Modification of the PSf membrane has been investigated in attempts to further enhance the anticoagulation properties of the hemodialysis membranes, including a heparin-modified PSf membrane. However, heparin can inhibit plasma-free thrombin, and cause the occurrence of heparin-induced thrombocytopenia (HIT), which increases the risk of bleeding during dialysis in critical care patients. To address this problem, we modified PSf membrane with as a novel direct thrombin inhibitors, argatroban (Arg). It can reversibly bind to thrombin, inhibiting not only the plasma-free thrombin in the blood, but also clot-bound thrombin.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian-Ping Ning
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Li R, Cai XM, Ye Y, Wu GZ. Influence of carboxyl and amide groups on in vitro
hemocompatibility of sulfonated polypropylene non-woven fabric. J Appl Polym Sci 2018. [DOI: 10.1002/app.45915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Xi-Ming Cai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Yin Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Guo-Zhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
20
|
A novel kind of polysulfone material with excellent biocompatibility modified by the sulfonated hydroxypropyl chitosan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|