1
|
Liu Y, Yuan H, Liu Y, Chen C, Tang Z, Huang C, Ning Z, Lu T, Wu Z. Multifunctional nanoparticle-VEGF modification for tissue-engineered vascular graft to promote sustained anti-thrombosis and rapid endothelialization. Front Bioeng Biotechnol 2023; 11:1109058. [PMID: 36733971 PMCID: PMC9887191 DOI: 10.3389/fbioe.2023.1109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Purpose: The absence of a complete endothelial cell layer is a well-recognized reason leading to small-diameter tissue-engineered vascular graft failure. Here we reported a multifunctional system consisting of chitosan (CS), Arg-Glu-Asp-Val (REDV) peptide, heparin, and vascular endothelial growth factor (VEGF) to achieve sustained anti-thrombosis and rapid endothelialization for decellularized and photo-oxidized bovine internal mammary arteries (DP-BIMA). Methods: CS-REDV copolymers were synthesized via a transglutaminase (TGase) catalyzed reaction. CS-REDV-Hep nanoparticles were formed by electrostatic self-assembly and loaded on the DP-BIMA. The quantification of released heparin and vascular endothelial growth factor was detected. Hemolysis rate, platelets adhesion, endothelial cell (EC) adhesion and proliferation, and MTT assay were performed in vitro. The grafts were then tested in a rabbit abdominal aorta interposition model for 3 months. The patency rates were calculated and the ECs regeneration was investigated by immunofluorescence staining of CD31, CD144, and eNOS antibodies. Results: The nanoparticle-VEGF system (particle size: 61.8 ± 18.3 nm, zeta-potential: +13.2 mV, PDI: .108) showed a sustained and controlled release of heparin and VEGF for as long as 1 month and exhibited good biocompatibility, a lower affinity for platelets, and a higher affinity for ECs in vitro. The nanoparticle-VEGF immobilized BIMA achieved 100% and 83.3% patency in a rabbit abdominal interposition model during 1 and 3 months, respectively, without any thrombogenicity and showed CD31, CD144, eNOS positive cell adhesion as early as 1 day. After 3 months, CD31, CD144, and eNOS positive cells covered almost the whole luminal surface of the grafts. Conclusion: The results demonstrated that the multifunctional nanoparticle-VEGF system can enhance the anti-thrombosis property and promote rapid endothelialization of small-diameter tissue-engineered vascular grafts. Utilizing nanoparticles to combine different kinds of biomolecules is an appropriate technology to improve the long-term patency of small-diameter tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Haoyong Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, China,*Correspondence: Ting Lu, ; Zhongshi Wu,
| |
Collapse
|
2
|
Chen C, Lu T, Wu Z, Xie X, Liu Y, Huang C, Liu Y. A proteomics analysis of neointima formation on decellularized vascular grafts reveals regenerative alterations in protein signature running head: Proteomics analysis of neointima formation. Front Bioeng Biotechnol 2022; 10:894956. [PMID: 36406232 PMCID: PMC9673820 DOI: 10.3389/fbioe.2022.894956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Neointima formation contributes to vascular grafts stenosis and thrombosis. It is a complex reaction that plays a significant role in the performance of vascular grafts. Despite its critical implications, little is known about the mechanisms underlying neointima formation. This study compares neointima proteome in different stages and plasma samples. Methods: Heterogenous acellular native arteries were implanted as abdominal aortic interposition grafts in a rabbit model. Grafts were harvested at 0.5, 1, 4, 6, 7, 14, 21, and 28 days post-surgery for histological and proteomic analysis of the neointima. Results: Histological examination showed a transformed morphological pattern and components, including serum proteins, inflammatory cells, and regenerative cells. Proteomics analysis of the neointima showed distinct characteristics after 14 days of implantation compared to early implantation. Early changes in the neointima samples were proteins involved in acute inflammation and thrombosis, followed by the accumulation of extracellular matrix (ECM) proteins. A total of 110 proteins were found to be differentially expressed in later samples of neointima compared to early controls. The enriched pathways were mainly protein digestion and adsorption, focal adhesion, PI3K-Akt signaling pathway, and ECM-receptor interaction in the late stage. All distributions of proteins in the neointima are different compared to plasma. Conclusion: The biological processes of neointima formation at different stages identified with proteome found developmental characteristics of vascular structure on a decellularized small vascular graft, and significant differences were identified by proteomics in the neointima of early-stage and late-stage after implantation. In the acute unstable phase, the loose and uniform neointima was mainly composed of plasma proteins and inflammatory cells. However, in the relatively stable later stage, the most notable results were an up-regulation of ECM components. The present study demonstrates an interaction between biological matter and vascular graft, provides insights into biological process changes of neointima and facilitates the construction of a functional bioengineered small vascular graft for future clinical applications.
Collapse
Affiliation(s)
- Chunyang Chen
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Ting Lu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhongshi Wu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yalin Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| |
Collapse
|
3
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Gilman AB, Piskarev MS, Kuznetsov AA. Modification of polyether ether ketone by low-temperature plasma and ion implantation method for use in medicine and biology. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2917-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Ghaleh H, Jalili K, Maher BM, Rahbarghazi R, Mehrjoo M, Bonakdar S, Abbasi F. Biomimetic antifouling PDMS surface developed via well-defined polymer brushes for cardiovascular applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
La A, Tranquillo RT. Hemocompatible tissue-engineered vascular grafts using adult mesenchymal stem cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:66-73. [DOI: 10.1016/j.cobme.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5147156. [PMID: 29850530 PMCID: PMC5911326 DOI: 10.1155/2018/5147156] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 02/03/2023]
Abstract
Scaffolds play an important role in tissue engineering and their structure and biocompatibility have great influence on cell behaviors. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) scaffolds were printed by a 3D printing technology, low-temperature deposition manufacturing (LDM), and then PLCL scaffolds were treated by alkali and coated with collagen type I (COLI). The scaffolds were characterized by scanning electron microscopy (SEM), porosity test, mechanical test, and infrared spectroscopy. The prepared PLCL and PLCL-COLI scaffolds had three-dimensional (3D) porous structure and they not only have macropores but also have micropores in the deposited lines. Although the mechanical property of PLCL-COLI was slightly lower than that of PLCL scaffold, the hydrophilicity of PLCL-COLI was significantly enhanced. Rabbit articular chondrocytes were extracted and were identified as chondrocytes by toluidine blue staining. To study the biocompatibility, the chondrocytes were seeded on scaffolds for 1, 3, 5, 7, and 10 days. MTT assay showed that the proliferation of chondrocytes on PLCL-COLI scaffold was better than that on PLCL scaffold. And the morphology of cells on PLCL-COLI after 1-day culture was much better than that on PLCL. This 3D-printed PLCL scaffold coated with COLI shows a great potential application in tissue engineering.
Collapse
|
9
|
Wei Q, Jin J, Wang X, Shen Q, Zhou M, Bu S, Zhu Y. The growth and pluripotency of mesenchymal stem cell on the biodegradable polyurethane synthesized with ferric catalyst. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1095-1108. [DOI: 10.1080/09205063.2018.1426424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Qianqian Wei
- The Medical School, Ningbo University, Ningbo, China
| | - Jiachang Jin
- The Medical School, Ningbo University, Ningbo, China
| | - Xinyuan Wang
- The Medical School, Ningbo University, Ningbo, China
| | - Qijun Shen
- The Medical School, Ningbo University, Ningbo, China
| | - Mi Zhou
- The Medical School, Ningbo University, Ningbo, China
| | - Shizhong Bu
- The Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- The Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Chen JM. It's in 3D, but is it truly the next dimension? J Thorac Cardiovasc Surg 2016; 153:923. [PMID: 27993363 DOI: 10.1016/j.jtcvs.2016.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Jonathan M Chen
- Section of Congenital Cardiac Surgery, Seattle Children's Hospital, Seattle, Wash.
| |
Collapse
|