1
|
Huang H, Chen X, Cai B, Yu J, Wang B. Comparison of the efficacy and safety of lasers, topical timolol, and combination therapy for the treatment of infantile hemangioma: A meta-analysis of 10 studies. Dermatol Ther 2022; 35:e15907. [PMID: 36205218 DOI: 10.1111/dth.15907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022]
Abstract
Topical timolol and lasers are widely used for the treatment of infantile hemangioma (IH), and they can replace propranolol as the first-line treatment of IH. We aimed to investigate the efficacy and safety of topical timolol alone or lasers plus topical timolol versus lasers alone for the treatment of IH using a meta-analysis. We searched the PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases. A more conservative random effect model meta-analysis technique was used to analyze the efficacy and adverse reactions of timolol and lasers. Ten RCTs with a total of 979 patients with IH were included in this meta-analysis. Treatment with topical timolol alone was as effective as lasers in treating IH (risk ratio [RR] = 0.99, p = 0.94), with similar adverse events. The difference was not statistically significant (RR = 1.67, p = 0.14). Combined treatment with topical timolol and lasers showed a favorable response rate compared with treatment with either lasers (RR = 1.23, p = 0.01) or topical timolol (RR = 1.35, p = 0.001) alone. Furthermore, compared to topical timolol alone, the combined treatment indicated similar risks of adverse events (RR = 0.70, p = 0.38) but fewer risks of adverse events (RR = 0.39, p = 0.004) compared to lasers alone. This meta-analysis provided evidences that a combined treatment with topical timolol and lasers might be more effective than a single treatment strategy in infants with IH, and with no significant increase in adverse reactions. The combination of topical timolol and laser therapy might be the preferred choice for the treatment of IHs.
Collapse
Affiliation(s)
- Huaxu Huang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuanfeng Chen
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Beichen Cai
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaqi Yu
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Biao Wang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Yu Z, Meng X, Zhang S, Chen Y, Zhang Z, Zhang Y. Recent Progress in Transdermal Nanocarriers and Their Surface Modifications. Molecules 2021; 26:molecules26113093. [PMID: 34064297 PMCID: PMC8196818 DOI: 10.3390/molecules26113093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Transdermal drug delivery system (TDDS) is an attractive method for drug delivery with convenient application, less first-pass effect, and fewer systemic side effects. Among all generations of TDDS, transdermal nanocarriers show the greatest clinical potential because of their non-invasive properties and high drug delivery efficiency. However, it is still difficult to design optimal transdermal nanocarriers to overcome the skin barrier, control drug release, and achieve targeting. Hence, surface modification becomes a promising strategy to optimize and functionalize the transdermal nanocarriers with enhanced penetration efficiency, controlled drug release profile, and targeting drug delivery. Therefore, this review summarizes the developed transdermal nanocarriers with their transdermal mechanism, and focuses on the surface modification strategies via their different functions.
Collapse
Affiliation(s)
- Zhixi Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Xinxian Meng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Shunuo Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Shanghai National Engineering Research Center for Nanotechnology, 245 Jiachuan Road, Shanghai 200237, China
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| |
Collapse
|
4
|
Thakur RRS, Adwan S, Tekko I, Soliman K, Donnelly RF. Laser irradiation of ocular tissues to enhance drug delivery. Int J Pharm 2021; 596:120282. [PMID: 33508342 DOI: 10.1016/j.ijpharm.2021.120282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Scleral and corneal membranes represent substantial barriers against drug delivery to the eye. Conventional hypodermic needles-based intraocular injections are clinically employed to overcome these barriers. This study, for the first time, investigated a non-invasive alternative to intraocular injections by laser irradiation of ocular tissues. The P.L.E.A.S.E.® laser device was applied on excised porcine scleral and corneal tissues, which showed linear relationships between depths of laser-created micropores and laser fluences at range 8.9-444.4 J/cm2. Deeper and wider micropores were observed in scleral relative to corneal tissues. The permeation of rhodamine B and fluorescein isothiocyanate (FITC)-dextran were investigated through ocular tissues at different laser parameters (laser fluences 0-44.4 J/cm2 and micropore densities 7.5 and 15%). Both molecules showed enhanced permeation through ocular tissues on laser irradiation. Maximum transscleral permeation of the molecules was attained at laser fluence 8.9 J/cm2 and micropore density 15%. Transcorneal permeation of rhodamine B increased with increasing either laser fluence or micropore density, while that of FITC-dextran was not affected by either parameter. The transscleral water loss increased significantly after laser irradiation then returned to the baseline values within 24 h, indicating healing of the laser-created micropores. Laser irradiation is a promising technique to enhance intraocular delivery of both small and large molecule drugs.
Collapse
Affiliation(s)
- Raghu Raj Singh Thakur
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| | - Samer Adwan
- Faculty of Pharmacy, Zarqa University, Zarqa 132222, Jordan
| | - Ismaiel Tekko
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Karim Soliman
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| |
Collapse
|
5
|
Fundamentals of fractional laser-assisted drug delivery: An in-depth guide to experimental methodology and data interpretation. Adv Drug Deliv Rev 2020; 153:169-184. [PMID: 31628965 DOI: 10.1016/j.addr.2019.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023]
Abstract
In the decade since their advent, ablative fractional lasers have emerged as powerful tools to enhance drug delivery to and through the skin. Effective and highly customizable, laser-assisted drug delivery (LADD) has led to improved therapeutic outcomes for several medical indications. However, for LADD to reach maturity as a standard treatment technique, a greater appreciation of its underlying science is needed. This work aims to provide an in-depth guide to the technology's fundamental principles, experimental methodology and unique aspects of LADD data interpretation. We show that drug's physicochemical properties including solubility, molecular weight and tissue binding behavior, are crucial determinants of how laser channel morphology influences topical delivery. Furthermore, we identify strengths and limitations of experimental models and drug detection techniques, interrogating the usefulness of in vitro data in predicting LADD in vivo. By compiling insights from over 75 studies, we ultimately devise an approach for intelligent application of LADD, supporting its implementation in the clinical setting.
Collapse
|
6
|
Hsiao CY, Yang SC, Alalaiwe A, Fang JY. Laser ablation and topical drug delivery: a review of recent advances. Expert Opin Drug Deliv 2019; 16:937-952. [DOI: 10.1080/17425247.2019.1649655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|