1
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
2
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
3
|
Rebolledo LP, Ke W, Cedrone E, Wang J, Majithia K, Johnson MB, Dokholyan NV, Dobrovolskaia MA, Afonin KA. Immunostimulation of Fibrous Nucleic Acid Nanoparticles Can be Modulated through Aptamer-Based Functional Moieties: Unveiling the Structure-Activity Relationship and Mechanistic Insights. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8430-8441. [PMID: 38344840 PMCID: PMC10895590 DOI: 10.1021/acsami.3c17779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Fibrous nanomaterials containing silica, titanium oxide, and carbon nanotubes are notoriously known for their undesirable inflammatory responses and associated toxicities that have been extensively studied in the environmental and occupational toxicology fields. Biopersistance and inflammation of "hard" nanofibers prevent their broader biomedical applications. To utilize the structural benefits of fibrous nanomaterials for functionalization with moieties of therapeutic significance while preventing undesirable immune responses, researchers employ natural biopolymers─RNA and DNA─to design "soft" and biodegradable nanomaterials with controlled immunorecognition. Nucleic acid nanofibers have been shown to be safe and efficacious in applications that do not require their delivery into the cells such as the regulation of blood coagulation. Previous studies demonstrated that unlike traditional therapeutic nucleic acids (e.g., CpG DNA oligonucleotides) nucleic acid nanoparticles (NANPs), when used without a carrier, are not internalized by the immune cells and, as such, do not induce undesirable cytokine responses. In contrast, intracellular delivery of NANPs results in cytokine responses that are dependent on the physicochemical properties of these nanomaterials. However, the structure-activity relationship of innate immune responses to intracellularly delivered fibrous NANPs is poorly understood. Herein, we employ the intracellular delivery of model RNA/DNA nanofibers functionalized with G-quadruplex-based DNA aptamers to investigate how their structural properties influence cytokine responses. We demonstrate that nanofibers' scaffolds delivered to the immune cells using lipofectamine induce interferon response via the cGAS-STING signaling pathway activation and that DNA aptamers incorporation shields the fibers from recognition by cGAS and results in a lower interferon response. This structure-activity relationship study expands the current knowledge base to inform future practical applications of intracellularly delivered NANPs as vaccine adjuvants and immunotherapies.
Collapse
Affiliation(s)
- Laura P Rebolledo
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland 21701, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishna Majithia
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Biochemistry & Molecular Biology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland 21701, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
4
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|