1
|
Short E, Ajjan R, Barber TM, Benson I, Higginbotham V, Huckstepp R, Kanamarlapudi V, Mumwiro N, Calimport SRG, Bentley B. Adrenal cortex senescence: an ageing-related pathology? J Endocrinol Invest 2025:10.1007/s40618-025-02566-9. [PMID: 40131721 DOI: 10.1007/s40618-025-02566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
The adrenal glands are a pair of endocrine organs that produce and secrete mineralocorticoids, glucocorticoids, sex hormones, adrenaline, and noradrenaline. They have a vital role in a range of physiological processes including regulating electrolyte balance, blood pressure and metabolism, immunomodulation, sexual development and the stress response. Adrenal cortex senescence describes the ageing-related decline in the normal functioning of the adrenal cortex, characterised by an alteration in the output of adrenal cortical hormones, in particular reduced secretion of dehydroepiandrosterone (DHEA) and sulfated dehydroepiandrosterone (DHEAS). Such endocrine aberrations may be implicated in adverse clinical outcomes including mood disturbances, impairment in cognitive functioning, metabolic dysfunction and osteopenia. This paper shall address whether adrenal cortex senescence should be recognised as an ageing-related pathology, which has recently been defined as one that develops and/or progresses with increasing chronological age, that is associated with, or contributes to, functional decline, and is evidenced by studies in humans.
Collapse
Affiliation(s)
- Emma Short
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
- Department of Cellular Pathology, Swansea Bay University Health Board, Swansea, UK.
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Thomas M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ian Benson
- University of Glasgow Medical School, Glasgow, UK
| | | | | | | | | | - Stuart R G Calimport
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
| | - Barry Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
- Center for Engineering in Medicine and Surgery, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| |
Collapse
|
2
|
Chen C, Wu B, Yu H, Dai Z, Yan L, Cai D, Chen S, He L, Lin S, Yao J, Shi J, Lin X, Qiu J, Lin Y, Liu X, Wu W. Oral dehydroepiandrosterone supplementation enhances osteoporotic fracture healing in the OVX rats. Bone 2024; 187:117201. [PMID: 38996859 DOI: 10.1016/j.bone.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Osteoporosis easily causes delayed fracture union, even non-union. It has been demonstrated that dehydroepiandrosterone (DHEA) supplementation can increase estrogen levels and improve bone mineral density (BMD) in the elderly, while the role of DHEA on fracture healing remains unknown. This study aimed to elucidate the impact of DHEA supplementation on osteoporotic fracture healing. Seventy-two female Sprague-Dawley rats were used. Forty-eight rats received ovariectomy (OVX), and the remaining rats received a sham OVX operation (sham group). A right transverse femoral osteotomy was performed in all rats at 12 weeks post-OVX. OVX rats were randomly allocated into 2 groups (n = 24 in each group): (i) ovariectomized rats (control group) and (ii) ovariectomized rats treated with DHEA (DHEA group, 5 mg/kg/day). The DHEA supplementation was initiated on the first day post-fracture for 3, 6, and 12 weeks. Fracture healing was evaluated by radiography, histology, biomechanical analysis, and dual-energy X-ray absorptiometry (DEXA). Serum biomarkers were analyzed using enzyme-linked immunosorbent assay (ELISA). At 3 and 6 weeks, radiographs revealed reduced calluses formation and lower radiographic scores in the control group than in other groups. The sham and DHEA groups showed higher BMD and bone mineral content (BMC) at the fracture site than the control group after fracture. Histological analysis revealed the fracture callus was remodeled better in the sham and DHEA groups than in the control group. At the early phase of healing, DHEA supplementation increased osteoblast number, callus area, and cartilage area than the control group. An increased bone area was observed in the DHEA group than in the control group at the late phase of healing. Additionally, improved biomechanical characteristics were observed in both the sham and DHEA groups than those in the control group post-fracture. ELISA showed higher levels of insulin-like growth factor-1 (IGF-1) and 17β-estradiol (E2) in the DHEA group than in the control group post-fracture. Furthermore, the DHEA group exhibited significantly elevated alkaline phosphatase (ALP) and osteocalcin (OC) levels compared to the control group at 6 and 12 weeks. The DHEA group and the control group did not exhibit a notable difference in TRAP-5b levels. The present study demonstrated that the DHEA treatment has a favorable impact on osteoporotic fracture healing by enhancing callus formation, consolidation, and strength in the OVX rats.
Collapse
Affiliation(s)
- Chonggang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Baofang Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Haiming Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Zhangsheng Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Lisheng Yan
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Donglu Cai
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Shoubo Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Lijiang He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Sanfu Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Jinzhi Yao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Jinnan Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Xiaocong Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Jinghu Qiu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Yuxi Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Xiaolin Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China
| | - Wenhua Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, PR China.
| |
Collapse
|
3
|
Sowińska-Przepiera E, Krzyścin M, Syrenicz I, Ćwiertnia A, Orlińska A, Ćwiek D, Branecka-Woźniak D, Cymbaluk-Płoska A, Bumbulienė Ž, Syrenicz A. Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters. Biomedicines 2024; 12:758. [PMID: 38672114 PMCID: PMC11048270 DOI: 10.3390/biomedicines12040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The absence of non-invasive methods for assessing bone material and structural changes is a significant diagnostic challenge. Dual-energy X-ray absorptiometry (DXA) bone mineral density (BMD) testing is the gold standard for osteoporosis diagnosis. BMD and the trabecular bone score (TBS) have facilitated targeted osteoporosis prevention and treatment in clinical settings. The findings from this study indicate that BMD modulation in young women is influenced by various hormones, potentially compromising the diagnostic precision of BMD for subclinical bone demineralization. A total of 205 women aged 19 to 37 underwent anthropometric measurements and hormonal tests. BMD was determined using DXA, and TBS values were computed from the lumbar spine L1-L4 segment. The multivariate analysis findings suggest that BMD might not be determined by hormones. The relationship between TBS and TSH was statistically significant in the univariate analysis, which indicates the efficacy of further studies to determine the link between TBS and specific hormones. Analyzing the strength of the correlation between TBS and hormones in the univariate analysis shows which factors are worth considering in further analyses. This makes it possible to create better techniques that will help identify young women who are at a higher risk of developing osteoporosis.
Collapse
Affiliation(s)
- Elżbieta Sowińska-Przepiera
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (I.S.); (A.S.)
| | - Mariola Krzyścin
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Igor Syrenicz
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (I.S.); (A.S.)
| | - Adrianna Ćwiertnia
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.Ć.); (A.O.); (A.C.-P.)
| | - Adrianna Orlińska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.Ć.); (A.O.); (A.C.-P.)
| | - Dorota Ćwiek
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dorota Branecka-Woźniak
- Department of Gynecology and Reproductive Health, Pomeranian Medical University of Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.Ć.); (A.O.); (A.C.-P.)
| | - Žana Bumbulienė
- Clinic of Obstetrics and Gynecology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania;
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (I.S.); (A.S.)
| |
Collapse
|
4
|
Lin J, Kao TW, Cheng YC, Fan KC, Huang YC, Liu CW. Dehydroepiandrosterone status and efficacy of dehydroepiandrosterone supplementation for bone health in anorexia nervosa: A systematic review and meta-analysis. Int J Eat Disord 2022; 55:733-746. [PMID: 35460091 DOI: 10.1002/eat.23714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was designed to determine the status of dehydroepiandrosterone (DHEA) in women with anorexia nervosa (AN) and to assess the efficacy of DHEA supplementation as a treatment for bone health in women with AN. METHOD Studies were retrieved from the PubMed, Embase, Cochrane Library, MEDLINE, and Scopus databases from inception to February 14, 2022. Observational studies that compared serum DHEA levels between women with AN and healthy controls were included for meta-analysis, and randomized controlled trials (RCTs) that evaluated the effects of DHEA supplementation on bone mass were reviewed. RESULTS Meta-analysis of 15 cross-sectional studies revealed that patients with AN had significantly elevated serum DHEA levels (mean difference (MD) = 311.63 ng/dl; 95% confidence interval (CI), 78.01-545.25) and reduced DHEAS levels (MD = -24.90 μg/dl; 95% CI, -41.72 to -8.07) compared with healthy controls. A systematic review of seven RCTs found that DHEA monotherapy does not improve bone mineral density (BMD) compared with placebo after adjusting for weight gain. While the combination of DHEA and conjugated oral contraceptives has led to increased bone strength and decreased bone loss, the beneficial effect appears to be limited to older adolescents and adults with closed physes. Potential detrimental effects on BMD were identified in younger adolescents with open physes in one study. DISCUSSION Due to the lack of apparent benefit of DHEA in women with AN and its potential detrimental effect on BMD in young patients with AN, current evidence does not support the use of DHEA. PUBLIC SIGNIFICANCE This study demonstrates that women with anorexia nervosa have abnormal levels of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS), which have been suggested by previous studies to play a role in the development of low bone density in this condition. However, current evidence does not support the use of DHEA as a treatment to preserve bone health in patients with anorexia nervosa given the lack of clear benefit following its use and also because of a potential detrimental effect on bone mineral density in young patients with anorexia nervosa.
Collapse
Affiliation(s)
- James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Wan Kao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chih Cheng
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Huang
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Wei Liu
- Research center of big data and meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Mills EG, Yang L, Nielsen MF, Kassem M, Dhillo WS, Comninos AN. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocr Rev 2021; 42:691-719. [PMID: 33901271 PMCID: PMC8599211 DOI: 10.1210/endrev/bnab015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Reproductive hormones play a crucial role in the growth and maintenance of the mammalian skeleton. Indeed, the biological significance for this hormonal regulation of skeletal homeostasis is best illustrated by common clinical reproductive disorders, such as primary ovarian insufficiency, hypothalamic amenorrhea, congenital hypogonadotropic hypogonadism, and early menopause, which contribute to the clinical burden of low bone mineral density and increased risk for fragility fracture. Emerging evidence relating to traditional reproductive hormones and the recent discovery of newer reproductive neuropeptides and hormones has deepened our understanding of the interaction between bone and the reproductive system. In this review, we provide a contemporary summary of the literature examining the relationship between bone biology and reproductive signals that extend beyond estrogens and androgens, and include kisspeptin, gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, prolactin, progesterone, inhibin, activin, and relaxin. A comprehensive and up-to-date review of the recent basic and clinical research advances is essential given the prevalence of clinical reproductive disorders, the emerging roles of upstream reproductive hormones in bone physiology, as well as the urgent need to develop novel safe and effective therapies for bone fragility in a rapidly aging population.
Collapse
Affiliation(s)
- Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Morten F Nielsen
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Moustapha Kassem
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark.,Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.,Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
6
|
Bentley C, Potter C, Yakoub KM, Brock K, Homer V, Toman E, Taylor AE, Shaheen F, Gilligan LC, Athwal A, Barton D, Carrera R, Young K, Desai A, McGee K, Ermogenous C, Sur G, Greig CA, Hazeldine J, Arlt W, Lord JM, Foster MA. A prospective, phase II, single-centre, cross-sectional, randomised study investigating Dehydroepiandrosterone supplementation and its Profile in Trauma: ADaPT. BMJ Open 2021; 11:e040823. [PMID: 34312190 PMCID: PMC8314713 DOI: 10.1136/bmjopen-2020-040823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The improvements in short-term outcome after severe trauma achieved through early resuscitation and acute care can be offset over the following weeks by an acute systemic inflammatory response with immuneparesis leading to infection, multiorgan dysfunction/multiorgan failure (MOF) and death. Serum levels of the androgen precursor dehydroepiandrosterone (DHEA) and its sulfate ester DHEAS, steroids with immune-enhancing activity, are low after traumatic injury at a time when patients are catabolic and immunosuppressed. Addressing this deficit and restoring the DHEA(S) ratio to cortisol may provide a range of physiological benefits, including immune modulatory effects. OBJECTIVE Our primary objective is to establish a dose suitable for DHEA supplementation in patients after acute trauma to raise circulating DHEA levels to at least 15 nmol/L. Secondary objectives are to assess if DHEA supplementation has any effect on neutrophil function, metabolic and cytokine profiles and which route of administration (oral vs sublingual) is more effective in restoring circulating levels of DHEA, DHEAS and downstream androgens. METHODS AND ANALYSIS A prospective, phase II, single-centre, cross-sectional, randomised study investigating Dehydroepiandrosterone supplementation and its profile in trauma, with a planned recruitment between April 2019 and July 2021, that will investigate DHEA supplementation and its effect on serum DHEA, DHEAS and downstream androgens in trauma. A maximum of 270 patients will receive sublingual or oral DHEA at 50, 100 or 200 mg daily over 3 days. Females aged ≥50 years with neck of femur fracture and male and female major trauma patients, aged 16-50 years with an injury severity score ≥16, will be recruited. ETHICS AND DISSEMINATION This protocol was approved by the West Midlands - Coventry and Warwickshire Research Ethics Committee (Reference 18/WM/0102) on 8 June 2018. Results will be disseminated via peer-reviewed publications and presented at national and international conferences. TRIAL REGISTRATION This trial is registered with the European Medicines Agency (EudraCT: 2016-004250-15) and ISRCTN (12961998). It has also been adopted on the National Institute of Health Research portfolio (CPMS ID:38158). TRIAL PROGRESSION The study recruited its first patient on 2 April 2019 and held its first data monitoring committee on 8 November 2019. DHEA dosing has increased to 100 mg in both male cohorts and remains on 50 mg in across all female groups.
Collapse
Affiliation(s)
- Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Claire Potter
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Kamal Makram Yakoub
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Kristian Brock
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Victoria Homer
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Emma Toman
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Fozia Shaheen
- Institute of Metabolism and Systems Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Amrita Athwal
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Darren Barton
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Ronald Carrera
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Katie Young
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Amisha Desai
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Kirsty McGee
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Christos Ermogenous
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Gurneet Sur
- D3B, CRUK Clinical Trials Unit, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- NIHR Birmingham Liver Biomedical Research Unit Clinical Trials Group (D3B team), CRUK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- National Institute of Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute of Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Mark A Foster
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Impact of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and BMI in elderly women: A meta-analysis of randomized controlled trials. Complement Ther Med 2020; 56:102620. [PMID: 33220453 DOI: 10.1016/j.ctim.2020.102620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the fact that numerous clinical studies have evaluated the positive effects of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and on the body mass index (BMI), more evidence is needed to certify that DHEA is a BMI-reducing agent in the elderly. This meta-analysis aims to clarify the various incompatible results and investigate the impact of DHEA supplementation on serum testosterone levels and lean body mass in elderly women. METHODS Four scientific databases (EMBASE, PubMed/MEDLINE, Scopus and Web of Science) were searched from inception until 20 August 2020 for trials comparing DHEA with placebo. Results were presented as weighted mean differences (WMDs) and 95 % confidence intervals (CIs) based on the random effects model (DerSimonian-Laird approach). RESULTS Nine arms with 793 subjects reported testosterone as an outcome measure. The overall results demonstrated that testosterone levels increased significantly after DHEA administration in elderly women (WMD: 17.52 ng/dL, 95 % CI: 6.61, 28.43, P = 0.002). In addition, DHEA administration significantly decreased the BMI (WMD:-0.39 kg/m2, I2 = 0.0 %). CONCLUSION The results of the current meta-analysis support the use of DHEA supplementation for increasing testosterone concentrations in elderly women.
Collapse
|
8
|
Kirby DJ, Buchalter DB, Anil U, Leucht P. DHEA in bone: the role in osteoporosis and fracture healing. Arch Osteoporos 2020; 15:84. [PMID: 32504237 DOI: 10.1007/s11657-020-00755-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 02/03/2023]
Abstract
Dehydroepiandrosterone (DHEA) is a metabolic intermediate in the biosynthesis of estrogens and androgens with a past clouded in controversy and bold claims. It was once touted as a wonder drug, a fountain of youth that could cure all ailments. However, in the 1980s DHEA was banned by the FDA given a lack of documented health benefits and long-term use data. DHEA had a revival in 1994 when it was released for open market sale as a nutritional supplement under the Dietary Supplement Health and Safety Act. Since that time, there has been encouraging research on the hormone, including randomized controlled trials and subsequent meta-analyses on various conditions that DHEA may benefit. Bone health has been of particular interest, as many of the metabolites of DHEA are known to be involved in bone homeostasis, specifically estrogen and testosterone. Studies demonstrate a significant association between DHEA and increased bone mineral density, likely due to DHEA's ability to increase osteoblast activity and insulin like growth factor 1 (IGF-1) expression. Interestingly, IGF-1 is also known to improve fracture healing, though DHEA, a potent stimulator of IGF-1, has never been tested in this scenario. The aim of this review is to discuss the history and mechanisms of DHEA as they relate to the skeletal system, and to evaluate if DHEA has any role in treating fractures.
Collapse
Affiliation(s)
- David J Kirby
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA.
| | - Daniel B Buchalter
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| | - Utkarsh Anil
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| |
Collapse
|