1
|
Karthick S, Gomathi N. IoT-based COVID-19 detection using recalling-enhanced recurrent neural network optimized with golden eagle optimization algorithm. Med Biol Eng Comput 2024; 62:925-940. [PMID: 38095786 DOI: 10.1007/s11517-023-02973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/15/2023] [Indexed: 02/22/2024]
Abstract
New potential for healthcare has been made possible by the development of the Internet of Medical Things (IoMT) with deep learning. This is applied for a broad range of applications. Normal medical devices together with sensors can gather important data when connected to the Internet, and deep learning uses this data to reveal symptoms and patterns and activate remote care. In recent years, the COVID-19 pandemic caused more mortality. Millions of people have been affected by this virus, and the number of infections is continually rising daily. To detect COVID-19, researchers attempt to utilize medical imaging and deep learning-based methods. Several methodologies were suggested utilizing chest X-ray (CXR) images for COVID-19 diagnosis. But these methodologies do not provide satisfactory accuracy. To overcome these drawbacks, a recalling-enhanced recurrent neural network optimized with golden eagle optimization algorithm (RERNN-GEO) is proposed in this paper. The intention of this work is to provide IoT-based deep learning method for the premature identification of COVID-19. This paradigm can be able to ease the workload of radiologists and medical specialists and also help with pandemic control. RERNN-GEO is a deep learning-based method; this is utilized in chest X-ray (CXR) images for COVID-19 diagnosis. Here, the Gray-Level Co-Occurrence Matrix (GLCM) window adaptive algorithm is used for extracting features to enable accurate diagnosis. By utilizing this algorithm, the proposed method attains better accuracy (33.84%, 28.93%, and 33.03%) and lower execution time (11.06%, 33.26%, and 23.33%) compared with the existing methods. This method can be capable of helping the clinician/radiologist to validate the initial assessment related to COVID-19.
Collapse
Affiliation(s)
- Karthick S
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Delhi - NCR Campus, Ghaziabad, India.
| | - Gomathi N
- Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, 600062, India
| |
Collapse
|
2
|
Mahalakshmi V, Balobaid A, Kanisha B, Sasirekha R, Ramkumar Raja M. Artificial Intelligence: A Next-Level Approach in Confronting the COVID-19 Pandemic. Healthcare (Basel) 2023; 11:854. [PMID: 36981511 PMCID: PMC10048108 DOI: 10.3390/healthcare11060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus diseases (COVID-19) in late 2019 in China created a devastating economical loss and loss of human lives. To date, 11 variants have been identified with minimum to maximum severity of infection and surges in cases. Bacterial co-infection/secondary infection is identified during viral respiratory infection, which is a vital reason for morbidity and mortality. The occurrence of secondary infections is an additional burden to the healthcare system; therefore, the quick diagnosis of both COVID-19 and secondary infections will reduce work pressure on healthcare workers. Therefore, well-established support from Artificial Intelligence (AI) could reduce the stress in healthcare and even help in creating novel products to defend against the coronavirus. AI is one of the rapidly growing fields with numerous applications for the healthcare sector. The present review aims to access the recent literature on the role of AI and how its subfamily machine learning (ML) and deep learning (DL) are used to curb the pandemic's effects. We discuss the role of AI in COVID-19 infections, the detection of secondary infections, technology-assisted protection from COVID-19, global laws and regulations on AI, and the impact of the pandemic on public life.
Collapse
Affiliation(s)
- V. Mahalakshmi
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Awatef Balobaid
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - B. Kanisha
- Department of Computer Science and Engineering, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, India
| | - R. Sasirekha
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, India
| | - M. Ramkumar Raja
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Wang X, He X, Wei J, Liu J, Li Y, Liu X. Application of artificial intelligence to the public health education. Front Public Health 2023; 10:1087174. [PMID: 36703852 PMCID: PMC9872201 DOI: 10.3389/fpubh.2022.1087174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
With the global outbreak of coronavirus disease 2019 (COVID-19), public health has received unprecedented attention. The cultivation of emergency and compound professionals is the general trend through public health education. However, current public health education is limited to traditional teaching models that struggle to balance theory and practice. Fortunately, the development of artificial intelligence (AI) has entered the stage of intelligent cognition. The introduction of AI in education has opened a new era of computer-assisted education, which brought new possibilities for teaching and learning in public health education. AI-based on big data not only provides abundant resources for public health research and management but also brings convenience for students to obtain public health data and information, which is conducive to the construction of introductory professional courses for students. In this review, we elaborated on the current status and limitations of public health education, summarized the application of AI in public health practice, and further proposed a framework for how to integrate AI into public health education curriculum. With the rapid technological advancements, we believe that AI will revolutionize the education paradigm of public health and help respond to public health emergencies.
Collapse
Affiliation(s)
- Xueyan Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Liu
- The First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Yuanxi Li
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Cingolani M, Scendoni R, Fedeli P, Cembrani F. Artificial intelligence and digital medicine for integrated home care services in Italy: Opportunities and limits. Front Public Health 2023; 10:1095001. [PMID: 36684935 PMCID: PMC9849776 DOI: 10.3389/fpubh.2022.1095001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Home healthcare in the Italian health system has proven to be an essential factor in adequately responding to the health needs of an increasingly aging population. The opportunities offered by digitization and new technologies, such as artificial intelligence (AI) and robotics, are a lever for making home care services more effective and efficient on the one hand, and on the other for improving remote patient monitoring. Telemedicine devices have enormous potential for telemonitoring and telerehabilitation of patients suffering from chronic disabling diseases; in particular, AI systems can now provide very useful managerial and decision-making support in numerous clinical areas. AI combined with digitalization, could also allow for the remote monitoring of patients' health conditions. In this paper authors describe some digital and healthcare tools or system of AI, such as the Connected Care model, the Home Care Premium (HCP) project, The Resilia App and some professional service robotics. In this context, to optimize potential and concrete healthcare improvements, some limits need to be overcome: gaps in health information systems and digital tools at all levels of the Italian National Health Service, the slow dissemination of the computerized medical record, issues of digital literacy, the high cost of devices, the poor protection of data privacy. The danger of over-reliance on such systems should also be examined. Therefore the legal systems of the various countries, including Italy, should indicate clear decision-making paths for the patient.
Collapse
Affiliation(s)
- Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| | - Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy
| | | | - Fabio Cembrani
- Operative Unit of Legal Medicine, Provincial Authority for Health Services of Trento, Trento, Italy
| |
Collapse
|
5
|
Nia ZM, Asgary A, Bragazzi N, Mellado B, Orbinski J, Wu J, Kong J. Nowcasting unemployment rate during the COVID-19 pandemic using Twitter data: The case of South Africa. Front Public Health 2022; 10:952363. [PMID: 36530702 PMCID: PMC9757491 DOI: 10.3389/fpubh.2022.952363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
The global economy has been hard hit by the COVID-19 pandemic. Many countries are experiencing a severe and destructive recession. A significant number of firms and businesses have gone bankrupt or been scaled down, and many individuals have lost their jobs. The main goal of this study is to support policy- and decision-makers with additional and real-time information about the labor market flow using Twitter data. We leverage the data to trace and nowcast the unemployment rate of South Africa during the COVID-19 pandemic. First, we create a dataset of unemployment-related tweets using certain keywords. Principal Component Regression (PCR) is then applied to nowcast the unemployment rate using the gathered tweets and their sentiment scores. Numerical results indicate that the volume of the tweets has a positive correlation, and the sentiments of the tweets have a negative correlation with the unemployment rate during and before the COVID-19 pandemic. Moreover, the now-casted unemployment rate using PCR has an outstanding evaluation result with a low Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Symmetric MAPE (SMAPE) of 0.921, 0.018, 0.018, respectively and a high R2-score of 0.929.
Collapse
Affiliation(s)
- Zahra Movahedi Nia
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada
| | - Ali Asgary
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), The Advanced Disaster, Emergency and Rapid Response Program, York University, Toronto, ON, Canada
| | - Nicola Bragazzi
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada
| | - Bruce Mellado
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Schools of Physics, Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - James Orbinski
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), The Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada
| | - Jianhong Wu
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada
| | - Jude Kong
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, Canada,*Correspondence: Jude Kong
| |
Collapse
|
6
|
Khan F, Siddiqui MA, Imtiaz S, Shaikh SA, Chen CL, Wu CM. Determinants of mental and financial health during COVID-19: Evidence from data of a developing country. Front Public Health 2022; 10:888741. [PMID: 36117608 PMCID: PMC9471958 DOI: 10.3389/fpubh.2022.888741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Mental and emotional issues are the top-level concerns of public health worldwide. These issues surged during Coronavirus (COVID-19) pandemic due to varied medical, social, and personal reasons. The social determinants highlighted in the literature mainly focus on household solutions rather than on increasing the financial wellbeing of individuals, especially for the most vulnerable groups where the psychological distress coming from the social inequalities cannot be entirely treated. Hence, this study attempts to familiarize the financial capability (the financial literacy, attitude, skills and behavior required for effective financial management) construct into public health domain in the times of COVID-19 as a determinant of psychological distress, and also explores the role of gender in it. The study uses Ordinary Least Square (OLS) regression analysis and employs mental distress questions and Organization for Economic Cooperation and Development (OECD) 2018 financial capability toolkit to collect data from a large sample of households from all over Pakistan. It is inferred that the higher the financial capability, the lower the financial and mental distress during COVID-19. Additionally, females are less financially knowledgeable, depict poor financial behaviors, and face more psychological issues than their counterparts. Age and education are also linked to mental stress during COVID-19. Finally, gender plays a moderating role in financial behavior, and financial and mental stress of households. As evident, COVID-19 is not going away soon hence the findings are relevant for policymakers to proactively plan for the pandemic's upcoming waves and help people be better financially equipped to fight against this or any upcoming crisis, and achieve better mental and physical health.
Collapse
Affiliation(s)
- Falak Khan
- FAST School of Management, Islamabad, Pakistan,National University of Computer and Emerging Sciences, Islamabad, Pakistan,*Correspondence: Falak Khan
| | - Muhammad A. Siddiqui
- FAST School of Management, Islamabad, Pakistan,National University of Computer and Emerging Sciences, Islamabad, Pakistan
| | - Salma Imtiaz
- Department of Software Engineering, International Islamic University, Islamabad, Pakistan
| | - Shoaib A. Shaikh
- Electrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Chin-Ling Chen
- School of Information Engineering, Changchun Sci-Tech University, Changchun, China,Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan,School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen, China,Chin-Ling Chen
| | - Chih-Ming Wu
- School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
7
|
Jalil Z, Abbasi A, Javed AR, Khan MB, Abul Hasanat MH, AlTameem A, AlKhathami M, Jilani Saudagar AK. A Novel Benchmark Dataset for COVID-19 Detection during Third Wave in Pakistan. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6354579. [PMID: 35990145 PMCID: PMC9391128 DOI: 10.1155/2022/6354579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consuming, and requires expert clinicians. Clinicians suggest that the PCR test is not a reliable automated COVID-19 patient detection system. This study proposed a machine learning-based approach to evaluate the PCR role in COVID-19 detection. We collect real data containing 603 COVID-19 samples from the Pakistan Institute of Medical Sciences (PIMS) Hospital in Islamabad, Pakistan, during the third COVID-19 wave. The experiments are separated into two sets. The first set comprises 24 features, including PCR test results, whereas the second comprises 24 features without PCR test. The findings demonstrate that the decision tree achieves the best detection rate for positive and negative COVID-19 patients in both scenarios. The findings reveal that PCR does not contribute to detecting COVID-19 patients. The findings also aid in the early detection of COVID-19, mainly when PCR test results are insufficient for diagnosing COVID-19 and help developing countries with a paucity of PCR tests and specialist facilities.
Collapse
Affiliation(s)
- Zunera Jalil
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Ahmed Abbasi
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Abdul Rehman Javed
- Department of Cyber Security, PAF Complex E-9, Air University, Islamabad, Pakistan
| | - Muhammad Badruddin Khan
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mozaherul Hoque Abul Hasanat
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah AlTameem
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed AlKhathami
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Impact of Healthcare on Stock Market Volatility and Its Predictive Solution Using Improved Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7097044. [PMID: 35965780 PMCID: PMC9366270 DOI: 10.1155/2022/7097044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
The unprecedented Corona Virus Disease (COVID-19) pandemic has put the world in peril and shifted global landscape in unanticipated ways. The SARSCoV2 virus, which caused the COVID-19 outbreak, first appeared in Wuhan, Hubei Province, China, in December 2019 and quickly spread around the world. This pandemic is not only a global health crisis, but it has caused the major global economic depression. As soon as the virus spread, stock market prices plummeted and volatility increased. Predicting the market during this outbreak has been of substantial importance and is the primary motivation to carry out this work. Given the nonlinearity and dynamic nature of stock data, the prediction of stock market is a challenging task. The machine learning models have proven to be a good choice for the development of effective and efficient prediction systems. In recent years, the application of hyperparameter optimization techniques for the development of highly accurate models has increased significantly. In this study, a customized neural network model is proposed and the power of hyperparameter optimization in modelling stock index prices is explored. A novel dataset is generated using nine standard technical indicators and COVID-19 data. In addition, the primary focus is on the importance of selection of optimal features and their preprocessing. The utilization of multiple feature ranking techniques combined with extensive hyperparameter optimization procedures is comprehensive for the prediction of stock index prices. Moreover, the model is evaluated by comparing it with other models, and results indicate that the proposed model outperforms other models. Given the detailed design methodology, preprocessing, exploratory feature analysis, and hyperparameter optimization procedures, this work gives a significant contribution to stock analysis research community during this pandemic.
Collapse
|
9
|
Karagiannis D, Mitsis K, Nikita KS. Development of a Low-Power IoMT Portable Pillbox for Medication Adherence Improvement and Remote Treatment Adjustment. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155818. [PMID: 35957374 PMCID: PMC9370836 DOI: 10.3390/s22155818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 05/14/2023]
Abstract
Patients usually deviate from prescribed medication schedules and show reduced adherence. Even when the adherence is sufficient, there are conditions where the medication schedule should be modified. Crucial drug-drug, food-drug, and supplement-drug interactions can lead to treatment failure. We present the development of an internet of medical things (IoMT) platform to improve medication adherence and enable remote treatment modifications. Based on photos of food and supplements provided by the patient, using a camera integrated to a portable 3D-printed low-power pillbox, dangerous interactions with treatment medicines can be detected and prevented. We compare the medication adherence of 14 participants following a complex medication schedule using a functional prototype that automatically receives remote adjustments, to a dummy pillbox where the adjustments are sent with text messages. The system usability scale (SUS) score was 86.79, which denotes excellent user acceptance. Total errors (wrong/no pill) between the functional prototype and the dummy pillbox did not demonstrate any statistically significant difference (p = 0.57), but the total delay of the intake time was higher (p = 0.03) during dummy pillbox use. Thus, the proposed low-cost IoMT pillbox improves medication adherence even with a complex regimen while supporting remote dose adjustment.
Collapse
|
10
|
Ramírez-del Real T, Martínez-García M, Márquez MF, López-Trejo L, Gutiérrez-Esparza G, Hernández-Lemus E. Individual Factors Associated With COVID-19 Infection: A Machine Learning Study. Front Public Health 2022; 10:912099. [PMID: 35844896 PMCID: PMC9279686 DOI: 10.3389/fpubh.2022.912099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The fast, exponential increase of COVID-19 infections and their catastrophic effects on patients' health have required the development of tools that support health systems in the quick and efficient diagnosis and prognosis of this disease. In this context, the present study aims to identify the potential factors associated with COVID-19 infections, applying machine learning techniques, particularly random forest, chi-squared, xgboost, and rpart for feature selection; ROSE and SMOTE were used as resampling methods due to the existence of class imbalance. Similarly, machine and deep learning algorithms such as support vector machines, C4.5, random forest, rpart, and deep neural networks were explored during the train/test phase to select the best prediction model. The dataset used in this study contains clinical data, anthropometric measurements, and other health parameters related to smoking habits, alcohol consumption, quality of sleep, physical activity, and health status during confinement due to the pandemic associated with COVID-19. The results showed that the XGBoost model got the best features associated with COVID-19 infection, and random forest approximated the best predictive model with a balanced accuracy of 90.41% using SMOTE as a resampling technique. The model with the best performance provides a tool to help prevent contracting SARS-CoV-2 since the variables with the highest risk factor are detected, and some of them are, to a certain extent controllable.
Collapse
Affiliation(s)
- Tania Ramírez-del Real
- Cátedras Conacyt, National Council on Science and Technology, Mexico City, Mexico
- Center for Research in Geospatial Information Sciences, Mexico City, Mexico
| | - Mireya Martínez-García
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Manlio F. Márquez
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Laura López-Trejo
- Institute for Security and Social Services of State Workers, Mexico City, Mexico
| | - Guadalupe Gutiérrez-Esparza
- Cátedras Conacyt, National Council on Science and Technology, Mexico City, Mexico
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Chiang TW, Chiang DL, Chen TS, Lin FYS, Shen VRL, Wang MC. Novel Lagrange interpolation polynomials for dynamic access control in a healthcare cloud system. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9200-9219. [PMID: 35942755 DOI: 10.3934/mbe.2022427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The authority of user personal health records (PHRs) is usually determined by the owner of a cloud computing system. When a PHR file is accessed, a dynamic access control algorithm must be used to authenticate the users. The proposed dynamic access control algorithm is based on a novel Lagrange interpolation polynomial with timestamps, mainly functioning to authenticate the users with key information. Moreover, the inclusion of timestamps allows user access within an approved time slot to enhance the security of the healthcare cloud system. According to the security analysis results, this healthcare cloud system can effectively resist common attacks, including external attacks, internal attacks, collaborative attacks and equation-based attacks. Furthermore, the overall computational complexity of establishing and updating the polynomials is O(n*m* (log m)2), which is a promising result, where m denotes the degree of $ polynomial~G\left(x, y\right) $ and n denotes the number of secure users in the hierarchy.
Collapse
Affiliation(s)
- Te-Wei Chiang
- Department of Information Management, National Taiwan University, Taipei City 106, Taiwan
| | - Dai-Lun Chiang
- Financial Technology Applications Program, Ming Chuan University, Taoyuan City 330, Taiwan
| | - Tzer-Shyong Chen
- Department of Information Management, Tunghai University, Taichung City 407, Taiwan
| | - Frank Yeong-Sung Lin
- Department of Information Management, National Taiwan University, Taipei City 106, Taiwan
| | - Victor R L Shen
- Department of Computer Science and Information Engineering, National Taipei University, Sanxia District, New Taipei City 237, Taiwan
- Department of Information Management, Chaoyang University of Technology, 168 Jifeng E. Rd., Wufeng District, Taichung City 413, Taiwan
| | - Min-Chien Wang
- Department of Information Management, Tunghai University, Taichung City 407, Taiwan
| |
Collapse
|
12
|
Bhatia S, Bansal D, Patil S, Pandya S, Ilyas QM, Imran S. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front Public Health 2022; 10:884645. [PMID: 35712272 PMCID: PMC9197220 DOI: 10.3389/fpubh.2022.884645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is unexpected weather patterns that can create an alarming situation. Due to climate change, various sectors are affected, and one of the sectors is healthcare. As a result of climate change, the geographic range of several vector-borne human infectious diseases will expand. Currently, dengue is taking its toll, and climate change is one of the key reasons contributing to the intensification of dengue disease transmission. The most important climatic factors linked to dengue transmission are temperature, rainfall, and relative humidity. The present study carries out a systematic literature review on the surveillance system to predict dengue outbreaks based on Machine Learning modeling techniques. The systematic literature review discusses the methodology and objectives, the number of studies carried out in different regions and periods, the association between climatic factors and the increase in positive dengue cases. This study also includes a detailed investigation of meteorological data, the dengue positive patient data, and the pre-processing techniques used for data cleaning. Furthermore, correlation techniques in several studies to determine the relationship between dengue incidence and meteorological parameters and machine learning models for predictive analysis are discussed. In the future direction for creating a dengue surveillance system, several research challenges and limitations of current work are discussed.
Collapse
Affiliation(s)
- Surbhi Bhatia
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Dhruvisha Bansal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Seema Patil
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Qazi Mudassar Ilyas
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sajida Imran
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
13
|
Ahmed F, Lee JW, Samantasinghar A, Kim YS, Kim KH, Kang IS, Memon FH, Lim JH, Choi KH. SperoPredictor: An Integrated Machine Learning and Molecular Docking-Based Drug Repurposing Framework With Use Case of COVID-19. Front Public Health 2022; 10:902123. [PMID: 35784208 PMCID: PMC9244710 DOI: 10.3389/fpubh.2022.902123] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
The global spread of the SARS coronavirus 2 (SARS-CoV-2), its manifestation in human hosts as a contagious disease, and its variants have induced a pandemic resulting in the deaths of over 6,000,000 people. Extensive efforts have been devoted to drug research to cure and refrain the spread of COVID-19, but only one drug has received FDA approval yet. Traditional drug discovery is inefficient, costly, and unable to react to pandemic threats. Drug repurposing represents an effective strategy for drug discovery and reduces the time and cost compared to de novo drug discovery. In this study, a generic drug repurposing framework (SperoPredictor) has been developed which systematically integrates the various types of drugs and disease data and takes the advantage of machine learning (Random Forest, Tree Ensemble, and Gradient Boosted Trees) to repurpose potential drug candidates against any disease of interest. Drug and disease data for FDA-approved drugs (n = 2,865), containing four drug features and three disease features, were collected from chemical and biological databases and integrated with the form of drug-disease association tables. The resulting dataset was split into 70% for training, 15% for testing, and the remaining 15% for validation. The testing and validation accuracies of the models were 99.3% for Random Forest and 99.03% for Tree Ensemble. In practice, SperoPredictor identified 25 potential drug candidates against 6 human host-target proteomes identified from a systematic review of journals. Literature-based validation indicated 12 of 25 predicted drugs (48%) have been already used for COVID-19 followed by molecular docking and re-docking which indicated 4 of 13 drugs (30%) as potential candidates against COVID-19 to be pre-clinically and clinically validated. Finally, SperoPredictor results illustrated the ability of the platform to be rapidly deployed to repurpose the drugs as a rapid response to emergent situations (like COVID-19 and other pandemics).
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Jae Wook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
- BioSpero, Inc., Jeju, South Korea
| | | | | | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Jong Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
- BioSpero, Inc., Jeju, South Korea
| |
Collapse
|
14
|
Shakeel T, Habib S, Boulila W, Koubaa A, Javed AR, Rizwan M, Gadekallu TR, Sufiyan M. A survey on COVID-19 impact in the healthcare domain: worldwide market implementation, applications, security and privacy issues, challenges and future prospects. COMPLEX INTELL SYST 2022; 9:1027-1058. [PMID: 35668731 PMCID: PMC9151356 DOI: 10.1007/s40747-022-00767-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022]
Abstract
Extensive research has been conducted on healthcare technology and service advancements during the last decade. The Internet of Medical Things (IoMT) has demonstrated the ability to connect various medical apparatus, sensors, and healthcare specialists to ensure the best medical treatment in a distant location. Patient safety has improved, healthcare prices have decreased dramatically, healthcare services have become more approachable, and the operational efficiency of the healthcare industry has increased. This research paper offers a recent review of current and future healthcare applications, security, market trends, and IoMT-based technology implementation. This research paper analyses the advancement of IoMT implementation in addressing various healthcare concerns from the perspectives of enabling technologies, healthcare applications, and services. The potential obstacles and issues of the IoMT system are also discussed. Finally, the survey includes a comprehensive overview of different disciplines of IoMT to empower future researchers who are eager to work on and make advances in the field to obtain a better understanding of the domain.
Collapse
Affiliation(s)
- Tanzeela Shakeel
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| | - Shaista Habib
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| | - Wadii Boulila
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, 12435 Saudi Arabia
| | - Anis Koubaa
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, 12435 Saudi Arabia
| | - Abdul Rehman Javed
- Department of Cyber Security, PAF Complex, E-9, Air University, Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Computer Science, Kinnaird College for Women, Lahore, Pakistan
| | - Thippa Reddy Gadekallu
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Mahmood Sufiyan
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
15
|
Kokol P, Blažun Vošner H, Kokol M, Završnik J. Role of Agile in Digital Public Health Transformation. Front Public Health 2022; 10:899874. [PMID: 35646754 PMCID: PMC9134062 DOI: 10.3389/fpubh.2022.899874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The digitalisation of healthcare, fueled by advances in technology and the COVID-19 pandemic can not only empower equitable access to global expert-level healthcare but also make healthcare more patient-centric. Every digital health solution has one common fundamental component: they all run on computing platforms and are powered by complex software. Traditional software development life cycles have often failed in designing complex software; consequently, the agile approach was introduced. To assess the role of agile in digital public health transformation, we used the synthetic knowledge synthesis, a triangulation of bibliometric mapping, and thematic analysis to analyse the available literature harvested from PubMed. The analysis showed that the use of the agile approach is underutilised in developing digital health software. Moreover, the study revealed that health organisations did not yet embrace the agile culture and should adapt using innovative agile solutions to deliver clinical value to patients and public health systems. Following the software industry, where agile software development is becoming the mainstream approach also for sensitive and regulated software, it is becoming even more essential that the digital health software development process should be modernised. Furthermore, a shift to agile collaboration, agile decision-making, trial tolerance, active engagement, purposeful technology adoption, knowledge sharing, and an open agile innovation ecosystem must be achieved.
Collapse
Affiliation(s)
- Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Peter Kokol
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, Slovenia
| | - Marko Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
- Semantika Research, Semantika d.o.o., Maribor, Slovenia
| | - Jernej Završnik
- Community Healthcare Center Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
- Science and Research Centre, Koper, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
16
|
Mantey EA, Zhou C, Srividhya SR, Jain SK, Sundaravadivazhagan B. Integrated Blockchain-Deep Learning Approach for Analyzing the Electronic Health Records Recommender System. Front Public Health 2022; 10:905265. [PMID: 35602165 PMCID: PMC9122032 DOI: 10.3389/fpubh.2022.905265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Blockchain is a recent revolutionary technology primarily associated with cryptocurrencies. It has many unique features including its acting as a decentralized, immutable, shared, and distributed ledger. Blockchain can store all types of data with better security. It avoids third-party intervention to ensure better security of the data. Deep learning is another booming field that is mostly used in computer applications. This work proposes an integrated environment of a blockchain-deep learning environment for analyzing the Electronic Health Records (EHR). The EHR is the medical documentation of a patient which can be shared among hospitals and other public health organizations. The proposed work enables a deep learning algorithm act as an agent to analyze the EHR data which is stored in the blockchain. This proposed integrated environment can alert the patients by means of a reminder for consultation, diet chart, etc. This work utilizes the deep learning approach to analyze the EHR, after which an alert will be sent to the patient's registered mobile number.
Collapse
Affiliation(s)
- Eric Appiah Mantey
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Eric Appiah Mantey
| | - Conghua Zhou
- School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China
| | - S. R. Srividhya
- Sathyabama Institute of Science and Technology, Chennai, India
| | | | - B. Sundaravadivazhagan
- Department of Information Technology, Faculty of Information Technology, University of Technology and Applied Sciences-Al, Mussanah, Oman
| |
Collapse
|