1
|
Kong YX, Chiu J, Passam FH. "Sticki-ER": Functions of the Platelet Endoplasmic Reticulum. Antioxid Redox Signal 2024; 41:637-660. [PMID: 38284332 DOI: 10.1089/ars.2024.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Significance: The primary role of platelets is to generate a thrombus by platelet activation. Platelet activation relies on calcium mobilization from the endoplasmic reticulum (ER). ER resident proteins, which are externalized upon platelet activation, are essential for the function of platelet surface receptors and intercellular interactions. Recent Advances: The platelet ER is a conduit for changes in cellular function in response to the extracellular milieu. ER homeostasis is maintained by an appropriate redox balance, regulated calcium stores and normal protein folding. Alterations in ER function and ER stress results in ER proteins externalizing to the cell surface, including members of the protein disulfide isomerase family (PDIs) and chaperones. Critical Issues: The platelet ER is central to platelet function, but our understanding of its regulation is incomplete. Previous studies have focused on the function of PDIs in the extracellular space, and much less on their intracellular role. How platelets maintain ER homeostasis and how they direct ER chaperone proteins to facilitate intercellular signalling is unknown. Future Directions: An understanding of ER functions in the platelet is essential as these may determine critical platelet activities such as secretion and adhesion. Studies are necessary to understand the redox reactions of PDIs in the intracellular versus extracellular space, as these differentially affect platelet function. An unresolved question is how platelet ER proteins control calcium release. Regulation of protein folding in the platelet and downstream pathways of ER stress require further evaluation. Targeting the platelet ER may have therapeutic application in metabolic and neoplastic disease.
Collapse
Affiliation(s)
- Yvonne X Kong
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Joyce Chiu
- ACRF Centenary Cancer Research Centre, The Centenary Institute; The University of Sydney, Camperdown, New South Wales, Australia
| | - Freda H Passam
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Liu S, Pokrovskaya ID, Storrie B. High-Pressure Freezing Followed by Freeze Substitution: An Optimal Electron Microscope Technique to Study Golgi Apparatus Organization and Membrane Trafficking. Methods Mol Biol 2023; 2557:211-223. [PMID: 36512217 PMCID: PMC11616625 DOI: 10.1007/978-1-0716-2639-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A major goal of structural biologists is to preserve samples as close to their living state as possible. High-pressure freezing (HPF) is a state-of-art technique that freezes the samples at high pressure (~2100 bar) and low temperature (-196 °C) within milliseconds. This ultrarapid fixation enables simultaneous immobilization of all cellular components and preserves the samples in a near-native state. This facilitates the study of dynamic processes in Golgi apparatus organization and membrane trafficking. The work in our laboratory shows that high-pressure freezing followed by freeze substitution (FS), the introduction of organic solvents at low temperature prior to plastic embedding, can better preserve the structure of Golgi apparatus and Golgi-associated vesicles. Here, we present a protocol for freezing monolayer cell cultures on sapphire disks followed by freeze substitution. We were able to use this protocol to successfully study Golgi organization and membrane trafficking in HeLa cells. The protocol gives decidedly better preservation of Golgi apparatus and associated vesicles than conventional chemically fixed preparation and as a plastic embedded preparation can be readily extended to 3D electron microscopy imaging through sequential block face-scanning electron microscopy. The 3D imaging of a multi-micron thick organelle such as the Golgi apparatus located near the cell nucleus is greatly facilitated relative to hydrated sample imaging techniques such as cryo-electron microscopy.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Storrie
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Bauer A, Frascaroli G, Walther P. Megapinosomes and homologous structures in hematopoietic cells. Histochem Cell Biol 2022; 158:253-260. [PMID: 35829814 PMCID: PMC9399034 DOI: 10.1007/s00418-022-02124-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
Megapinosomes are endocytic organelles found in human macrophage colony-stimulating factor (M-CSF) monocyte-derived M macrophages. They are large (several microns) and have a complex internal structure that is connected with the cytosol and consists of interconnected knots and concave bridges with sizes in the range of 100 nm. We called this structure trabecular meshwork. The luminal part of the megapinosome can be connected with luminal tubules and cisterns that form the megapinosome complex. The structures are especially well visible in scanning electron tomography when macrophages are prepared by high-pressure freezing and freeze substitution. Our research received a new impulse after studying the literature on hematopoietic cells, where very similar, most likely homologous, structures have been published in peritoneal macrophages as well as in megakaryocytes and blood platelets. In platelets, they serve as membrane storage that is used for structural changes of platelets during activation.
Collapse
Affiliation(s)
- Andrea Bauer
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Giada Frascaroli
- HPI, Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Whiteheart SW. Platelet-HIV: interactions and their implications. Platelets 2022; 33:208-211. [PMID: 35086429 PMCID: PMC8881393 DOI: 10.1080/09537104.2021.2019695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
While it is clear that platelets interact with viruses, the ramifications and mechanisms of those interactions are still being defined for each type of viral infection. HIV/AIDS+ represents a potentially unique example of how viremia affects platelets since the increasing efficacy of antiretroviral therapeutics (ART) has made it a chronic disease that increases the risk of cardiovascular disease. In this opinion article, we discuss some of the open questions about how platelets interact with HIV. What happens to a virion once it binds a platelet? What is the nature of virus-induced platelet activation? Are platelets a normal part of the immune response to viremia that has been co-opted to increase the spread of HIV? The answers to these and similar questions will help define how platelet-directed therapeutics might be used in treating HIV/AIDS+ patients.
Collapse
Affiliation(s)
- Sidney W. Whiteheart
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington KY, USA,Lexington VA Medical Center, Lexington, KY, USA,To whom correspondence should be directed: Sidney W. Whiteheart, Ph.D., Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, B361 BBSRB, 741 S Limestone, Lexington, KY 40536, USA, Tel: 859-257-4882, Fax: 859-257-2283,
| |
Collapse
|
6
|
Abstract
Upon activation, platelets release a plethora of factors which help to mediate their dynamic functions in hemostasis, inflammation, wound healing, tumor metastasis and angiogenesis. The majority of these bioactive molecules are released from α-granules, which are unique to platelets, and contain an incredibly diverse repertoire of cargo including; integral membrane proteins, pro-coagulant molecules, chemokines, mitogenic, growth and angiogenic factors, adhesion proteins, and microbicidal proteins. Clinically, activation of circulating platelets has increasingly been associated with various disease states. Biomarkers indicating the level of platelet activation in patients can therefore be useful tools to evaluate risk factors to predict future complications and determine treatment strategies or evaluate antiplatelet therapy. The irreversible nature of α-granule secretion makes it ideally suited as a marker of platelet activation. This review outlines the release and contents of platelet α-granules, as well as the membrane bound, and soluble α-granule cargo proteins that can be used as biomarkers of platelet activation.
Collapse
Affiliation(s)
- Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
7
|
Balint B, Pavlovic M, Todorovic M. Rapid Cytoreduction by Plateletapheresis in the Treatment of Thrombocythemia. Platelets 2020. [DOI: 10.5772/intechopen.93158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this chapter is to provide a systematic overview of current knowledge regarding therapeutic apheresis—primarily therapeutic plateletapheresis (TP)—and to summarize evidence-based practical approaches related to cytapheresis treatment of “hyperthrombocytosis” or “extreme thrombocytosis” (ETC). Our results of platelet (Plt) quantitative/qualitative analyses and evaluation of efficacy of apheresis systems/devices—on the basis of Plt removal and in vivo Plt depletion—will be presented. Our preclinical researches confirmed that in Plt concentrates, the initial ratio of discoid shapes was 70%, spherical 20%, and less valuable (dendritic/balloonized) shapes 10%—with morphological score of platelets (MSP = 300–400). After storage, the ratio of discoid and spherical shapes was decreased, while the less valuable ones progressively increased (MSP = 200). Electron microscopy has shown discoid shapes with typical ultrastructural properties. Spherical shapes with reduced electron density and peripheral location of granules/organelles were detected. Also, dendritic shapes with cytoskeletal “rearrangement,” membrane system integrity damages, and pseudopodia formations were documented. Our clinical study demonstrated that TP was useful in ETC treatment and should help prevention of “thrombo-hemorrhagic” events—until chemotherapy, antiplatelet drugs, and other medication take effect. During TP treatment, Plt count and morphology/ultrastructure were examined. Plt functions by multiplate analyzer were evaluated. We concluded that intensive TP was an effective, safe, and rapid cytoreductive treatment for ET.
Collapse
|
8
|
Serial block-face scanning electron microscopy: A provocative technique to define 3-dimensional ultrastructure of microvascular thrombosis. Thromb Res 2020; 196:519-522. [PMID: 33099176 DOI: 10.1016/j.thromres.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023]
|
9
|
Pokrovskaya I, Tobin M, Desai R, Aronova MA, Kamykowski JA, Zhang G, Joshi S, Whiteheart SW, Leapman RD, Storrie B. Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape. Platelets 2020; 32:608-617. [PMID: 32815431 DOI: 10.1080/09537104.2020.1799970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α-granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles.
Collapse
Affiliation(s)
- Irina Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael Tobin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Rohan Desai
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Jeffrey A Kamykowski
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, USA
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|