1
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
2
|
Buffon AC, Salm DC, Heymanns AC, Donatello NN, Martins DC, Wichmann JF, Giacomello L, Horewicz VV, Martins DF, Piovezan AP. Complex Regional Pain Syndrome Type I: Evidence for the CB1 and CB2 Receptors Immunocontent and Beneficial Effect of Local Administration of Cannabidiol in Mice. Cannabis Cannabinoid Res 2024; 9:1291-1300. [PMID: 37903029 DOI: 10.1089/can.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Introduction: Complex regional pain syndrome type I (CRPS-I) is a debilitating neuropathic painful condition associated with allodynia, hyperalgesia, sudomotor and/or vasomotor dysfunctions, turning investigation of its pathophysiology and new therapeutic strategies into an essential topic. We aim to investigate the impact of ischemia/reperfusion injury on the immunocontent of CB1 and CB2 cannabinoid receptor isoforms in the paws of mice submitted to a chronic postischemia pain (CPIP) model and the effects of local administration of cannabidiol (CBD) on mechanical hyperalgesia. Methods: Female Swiss mice, 30-35 g, were submitted to the CPIP model on the right hind paw. Skin and muscle samples were removed at different periods for western blot analysis. Results: No changes in the immunocontent of CB1 and CB2 receptors in paw muscle tissues after ischemia-reperfusion were observed. CBD promoted an antihyperalgesic effect in both phases. AM281 reversed the effect of CBD, whereas ruthenium red abolished the late phase. Conclusion: Our results point to the possible beneficial effects of local administration of CBD in modulating CRPS-I in humans. As possible targets for CBD antihyperalgesia in this model, the contribution of cannabinoid receptor CB1, in addition to TRPM8 is suggested.
Collapse
Affiliation(s)
- Alexandre C Buffon
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Ana C Heymanns
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Débora C Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | | | - Leandro Giacomello
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Anna P Piovezan
- Laboratory of Experimental Neuroscience (LANEX), University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Post-Graduate Program in Health Sciences, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
- Medicine Degree Course, University of Southern Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| |
Collapse
|
3
|
Hasbi A, Madras BK, George SR. Endocannabinoid System and Exogenous Cannabinoids in Depression and Anxiety: A Review. Brain Sci 2023; 13:brainsci13020325. [PMID: 36831868 PMCID: PMC9953886 DOI: 10.3390/brainsci13020325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Background: There is a growing liberalization of cannabis-based preparations for medical and recreational use. In multiple instances, anxiety and depression are cited as either a primary or a secondary reason for the use of cannabinoids. Aim: The purpose of this review is to explore the association between depression or anxiety and the dysregulation of the endogenous endocannabinoid system (ECS), as well as the use of phytocannabinoids and synthetic cannabinoids in the remediation of depression/anxiety symptoms. After a brief description of the constituents of cannabis, cannabinoid receptors and the endocannabinoid system, the most important evidence is presented for the involvement of cannabinoids in depression and anxiety both in human and from animal models of depression and anxiety. Finally, evidence is presented for the clinical use of cannabinoids to treat depression and anxiety. Conclusions: Although the common belief that cannabinoids, including cannabis, its main studied components-tetrahydrocannabinol (THC) and cannabidiol (CBD)-or other synthetic derivatives have been suggested to have a therapeutic role for certain mental health conditions, all recent systematic reviews that we report have concluded that the evidence that cannabinoids improve depressive and anxiety disorders is weak, of very-low-quality, and offers no guidance on the use of cannabinoids for mental health conditions within a regulatory framework. There is an urgent need for high-quality studies examining the effects of cannabinoids on mental disorders in general and depression/anxiety in particular, as well as the consequences of long-term use of these preparations due to possible risks such as addiction and even reversal of improvement.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| | - Bertha K. Madras
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Susan R. George
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: (A.H.); (S.R.G.)
| |
Collapse
|
4
|
Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, Bai L, Qin C. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease. CNS Neurosci Ther 2021; 27:1289-1299. [PMID: 34347369 PMCID: PMC8504527 DOI: 10.1111/cns.13702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease, and its pathogenesis is unclear. Previous studies mainly focus on the lesions of substantia nigra (SN) and striatum (Str) in PD. However, lesions are not limited. The olfactory bulb (OB), subventricular zone (SVZ), and hippocampus (Hippo) are also affected in PD. AIM To reveal gene expression changes in the five brain regions (OB, SVZ, Str, SN, and Hippo), and to look for potential candidate genes and pathways that may be correlated with the pathogenesis of PD. MATERIALS AND METHODS We established control group and 6-hydroxydopamine (6-OHDA) PD model group, and detected gene expressions in the five brain regions using RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR). We further analyzed the RNA-seq data by bioinformatics. RESULTS We identified differentially expressed genes (DEGs) in all five brain regions. The DEGs were significantly enriched in the "dopaminergic synapse" and "retrograde endocannabinoid signaling," and Gi/o-GIRK is the shared cascade in the two pathways. We further identified Ephx2, Fam111a, and Gng2 as the potential candidate genes in the pathogenesis of PD for further studies. CONCLUSION Our study suggested that gene expressions change in the five brain regions following exposure to 6-OHDA. The "dopaminergic synapse," "retrograde endocannabinoid signaling," and Gi/o-GIRK may be the key pathways and cascade of the synaptic damage in 6-OHDA PD rats. Ephx2, Fam111a, and Gng2 may play critical roles in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiying Huang
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xuepei Lei
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Keya Li
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Zhou
- Beijing City University, Beijing, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
5
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Rietcheck H, Maghfour J, Rundle C, Husayn S, Presley C, Sillau S, Liu Y, Leehey M, Dunnick C, Dellavalle R. A Review of the Current Evidence Connecting Seborrheic Dermatitis and Parkinson’s Disease and the Potential Role of Oral Cannabinoids. Dermatology 2020; 237:872-877. [DOI: 10.1159/000512189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder associated with multiple comorbidities, including seborrheic dermatitis (SD), which develops in more than half of PD patients. SD in patients with PD can be severe and frequently intractable by traditional topical therapy. Cannabinoids possess anti-inflammatory and neuromodulatory properties working within the intrinsic endocannabinoid system, the activation of which may alleviate the motor symptoms of PD. The effect of cannabinoids on SD is unknown. Here we explore the pathophysiological mechanisms and possible therapeutic role of oral cannabinoids in PD patients with SD, and review speculative mechanisms underlying the association of PD and SD. Current data supporting the use of cannabinoids in both PD and SD, as well as oral cannabinoid safety and tolerability, are presented. Cannabinoids may provide the possibility of simultaneous treatment of both SD and PD. Specific SD studies and additional safety data on oral cannabinoids are needed.
Collapse
|
7
|
Sancandi M, Uysal-Onganer P, Kraev I, Mercer A, Lange S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21082743. [PMID: 32326590 PMCID: PMC7215947 DOI: 10.3390/ijms21082743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of biomarkers for early diagnosis of Parkinson’s disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to “Alzheimer’s disease”, “PD”, “Huntington’s disease”, “prion diseases”, as well as for “oxidative phosphorylation”, “thermogenesis”, “metabolic pathways”, “Staphylococcus aureus infection”, gap junction, “platelet activation”, “apelin signalling”, “retrograde endocannabinoid signalling”, “systemic lupus erythematosus”, and “non-alcoholic fatty liver disease”. Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.
Collapse
Affiliation(s)
- Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000 (ext. 64832)
| |
Collapse
|
8
|
Zhou J, Noori H, Burkovskiy I, Lafreniere JD, Kelly MEM, Lehmann C. Modulation of the Endocannabinoid System Following Central Nervous System Injury. Int J Mol Sci 2019; 20:E388. [PMID: 30658442 PMCID: PMC6359397 DOI: 10.3390/ijms20020388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression-CIDS). The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS. Evidence suggests that cannabinoid type 2 receptor (CB₂R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB₂R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Haneen Noori
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - J Daniel Lafreniere
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Melanie E M Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
9
|
Burkovskiy I, Zhou J, Lehmann C. Experimental Cannabinoid 2 Receptor Inhibition in CNS Injury-Induced Immunodeficiency Syndrome. Microcirculation 2018; 23:283-92. [PMID: 26999797 DOI: 10.1111/micc.12276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Severe CNS injury, such as stroke, traumatic brain injury, or spinal cord injury, is known to increase susceptibility to infections. The increased susceptibility to infection is due to an impaired immune response and is referred to as CIDS. The CB2 receptor on immune cells presents a potential therapeutic target in CIDS as activation of this receptor has been shown to be involved in immunosuppression. The main purpose of this study was to determine the impact of CB2 receptor inhibition on leukocyte activation within the microcirculation following endotoxin challenge in an experimental stroke model. METHODS Five experimental groups (male C57BL/6 mice, age: 6-8 weeks) were subjected to the following treatments: control; endotoxemia (LPS 5 mg/kg, i.v.); transient cerebral hypoxia-ischemia (HI) + endotoxemia; HI + endotoxemia + CB2 receptor antagonist (AM630 2.5 mg/kg, i.v.). HI was induced by unilateral carotid artery occlusion, followed by 50 minute exposure to a low oxygen atmosphere (8% O2 ). The CB2 receptor antagonist was given 15 min prior to LPS administration. Intravital microscopy (IVM) was carried out 2h after LPS administration. Brains were extracted and stained with tetrazolium chloride (TTC) to measure infarct volume. RESULTS Compared to endotoxemic animals without CNS injury, mice subjected to HI displayed reduced leukocyte activation in intestinal submucosal venules indicative of CIDS. Administration of the CB2 receptor antagonist in animals with CIDS challenged with endotoxin restored peripheral leukocyte recruitment without a detrimental impact on infarct size. CONCLUSION We conclude that the ECS is involved in the impaired immune response following CNS injury. Future studies should further explore the CB2 receptor pathway to develop novel therapies for CIDS.
Collapse
Affiliation(s)
- Ian Burkovskiy
- Department of Anaesthesia, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Juan Zhou
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Anaesthesia, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zajac DM, Sikkema SR, Chandrasena R. Nabilone for the Treatment of Dementia-Associated Sexual Disinhibition. Prim Care Companion CNS Disord 2015; 17:14l01695. [PMID: 26137350 DOI: 10.4088/pcc.14l01695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Daria M Zajac
- Schulich School of Medicine and Dentistry, Western University, London (Mss Zajac and Sikkema); and Chatham-Kent Health Alliance, Mental Health and Addictions Program, Chatham (Dr Chandrasena), Ontario, Canada
| | - Sarah R Sikkema
- Schulich School of Medicine and Dentistry, Western University, London (Mss Zajac and Sikkema); and Chatham-Kent Health Alliance, Mental Health and Addictions Program, Chatham (Dr Chandrasena), Ontario, Canada
| | - Ranjith Chandrasena
- Schulich School of Medicine and Dentistry, Western University, London (Mss Zajac and Sikkema); and Chatham-Kent Health Alliance, Mental Health and Addictions Program, Chatham (Dr Chandrasena), Ontario, Canada
| |
Collapse
|
12
|
Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 2014; 19:18781-816. [PMID: 25407719 PMCID: PMC6271458 DOI: 10.3390/molecules191118781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023] Open
Abstract
Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.
Collapse
|
13
|
L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 2013; 79:90-100. [PMID: 24230991 DOI: 10.1016/j.neuropharm.2013.10.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 11/21/2022]
Abstract
The molecular basis of priming for L-DOPA-induced dyskinesias in Parkinson's disease (PD), which depends on the indirect pathway of motor control, is not known. In rodents, the indirect pathway contains striatopallidal GABAergic neurons that express heterotrimers composed of A(2A) adenosine, CB(1) cannabinoid and D(2) dopamine receptors that regulate dopaminergic neurotransmission. The present study was designed to investigate the expression of these heteromers in the striatum of a primate model of Parkinson's disease and to determine whether their expression and pharmacological properties are altered upon L-DOPA treatment. By using the recently developed in situ proximity ligation assay and by identification of a biochemical fingerprint, we discovered a regional distribution of A(2A)/CB(1) /D(2) receptor heteromers that predicts differential D(2)-mediated neurotransmission in the caudate-putamen of Macaca fascicularis. Whereas heteromers were abundant in the caudate nucleus of both naïve and MPTP-treated monkeys, L-DOPA treatment blunted the biochemical fingerprint and led to weak heteromer expression. These findings constitute the first evidence of altered receptor heteromer expression in pathological conditions and suggest that drugs targeting A(2A)-CB(1) -D(2) receptor heteromers may be successful to either normalize basal ganglia output or prevent L-DOPA-induced side effects.
Collapse
|
14
|
Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Máthé D, Csiba L, Gulyás B. The decrease of dopamine D₂/D₃ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015. Brain Res Bull 2012; 87:504-10. [PMID: 22421165 DOI: 10.1016/j.brainresbull.2012.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/24/2023]
Abstract
Cannabinoid type-1 receptors (CB₁Rs) modulate synaptic neurotransmission by participating in retrograde signaling in the adult brain. Increasing evidence suggests that cannabinoids through CB₁Rs play an important role in the regulation of motor activities in the striatum. In the present study, we used human brain samples to examine the relationship between CB₁R and dopamine receptor density in case of Parkinson's disease (PD). Post mortem putamen, nucleus caudatus and medial frontal gyrus samples obtained from PD patients were used for CB₁R and dopamine D₂/D₃ receptor autoradiography. [¹²⁵I]SD7015, a novel selective CB₁R inverse agonist, developed by a number of the present co-authors, and [³H]raclopride, a dopamine D₂/D₃ antagonist, were used as radioligands. Our results demonstrate unchanged CB₁R density in the putamen and nucleus caudatus of deceased PD patients, treated with levodopa (L-DOPA). At the same time dopamine D₂/D₃ receptors displayed significantly decreased density levels in case of PD putamen (control: 47.97 ± 10.00 fmol/g, PD: 3.73 ± 0.07 fmol/g (mean ± SEM), p<0.05) and nucleus caudatus (control: 30.26 ± 2.48 fmol/g, PD: 12.84 ± 5.49 fmol/g, p<0.0005) samples. In contrast to the putamen and the nucleus caudatus, in the medial frontal gyrus neither receptor densities were affected. Our data suggest the presence of an unaltered CB₁R population even in late stages of levodopa treated PD. This further supports the presence of an intact CB₁R population which, in line with the conclusion of earlier publications, may be utilized as a pharmacological target in the treatment of PD. Furthermore we found discrepancy between a maintained CB₁R population and a decreased dopamine D₂/D₃ receptor population in PD striatum. The precise explanation of this conundrum requires further studies with simultaneous examination of the central cannabinoid and dopaminergic systems in PD using higher sample size.
Collapse
Affiliation(s)
- Szabolcs Farkas
- Department of Neurology, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kerr D, Burke N, Ford G, Connor T, Harhen B, Egan L, Finn D, Roche M. Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience 2012; 204:53-63. [DOI: 10.1016/j.neuroscience.2011.09.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
|
16
|
Fernández-Ruiz J, Moreno-Martet M, Rodríguez-Cueto C, Palomo-Garo C, Gómez-Cañas M, Valdeolivas S, Guaza C, Romero J, Guzmán M, Mechoulam R, Ramos JA. Prospects for cannabinoid therapies in basal ganglia disorders. Br J Pharmacol 2012; 163:1365-78. [PMID: 21545415 DOI: 10.1111/j.1476-5381.2011.01365.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ(9) -tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB(1) and CB(2) receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB(2) receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB(2) receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB(2) receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB(2) receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB(2) receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gorelick DA, Goodwin RS, Schwilke E, Schwope DM, Darwin WD, Kelly DL, McMahon RP, Liu F, Ortemann-Renon C, Bonnet D, Huestis MA. Antagonist-elicited cannabis withdrawal in humans. J Clin Psychopharmacol 2011; 31:603-12. [PMID: 21869692 PMCID: PMC3717344 DOI: 10.1097/jcp.0b013e31822befc1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Howes MJR, Perry E. The Role of Phytochemicals in the Treatment and Prevention of Dementia. Drugs Aging 2011; 28:439-68. [DOI: 10.2165/11591310-000000000-00000] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Cross state-dependency of learning between WIN55, 212-2 and scopolamine in rat dorsal hippocampus. Neurosci Lett 2011; 491:227-31. [DOI: 10.1016/j.neulet.2011.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/14/2010] [Accepted: 01/23/2011] [Indexed: 11/19/2022]
|
20
|
Greineisen WE, Turner H. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists. Int Immunopharmacol 2010; 10:547-55. [PMID: 20219697 DOI: 10.1016/j.intimp.2010.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/19/2010] [Indexed: 12/20/2022]
Abstract
The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Department of Biology, Chaminade University, Honolulu, Hawaii 96816, USA
| | | |
Collapse
|