1
|
Shuryak I, Brenner DJ. REVIEW OF QUANTITATIVE MECHANISTIC MODELS OF RADIATION-INDUCED NON-TARGETED EFFECTS (NTE). RADIATION PROTECTION DOSIMETRY 2020; 192:236-252. [PMID: 33395702 PMCID: PMC7840098 DOI: 10.1093/rpd/ncaa207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Quantitative mechanistic modeling of the biological effects of ionizing radiation has a long rich history. Initially, it was dominated by target theory, which quantifies damage caused by traversal of cellular targets like DNA by ionizing tracks. The discovery that mutagenesis, death and/or altered behavior sometimes occur in cells that were not themselves traversed by any radiation tracks but merely interacted with traversed cells was initially seen as surprising. As more evidence of such 'non-targeted' or 'bystander' effects accumulated, the importance of their contribution to radiation-induced damage became more recognized. Understanding and modeling these processes is important for quantifying and predicting radiation-induced health risks. Here we review the variety of mechanistic mathematical models of nontargeted effects that emerged over the past 2-3 decades. This review is not intended to be exhaustive, but focuses on the main assumptions and approaches shared or distinct between models, and on identifying areas for future research.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630W 168th street, New York, NY 10032, USA
| | | |
Collapse
|
2
|
Solanki JH, Tritt T, Pasternack JB, Kim JJ, Leung CN, Domogauer JD, Colangelo NW, Narra VR, Howell RW. Cellular Response to Exponentially Increasing and Decreasing Dose Rates: Implications for Treatment Planning in Targeted Radionuclide Therapy. Radiat Res 2017; 188:221-234. [PMID: 28541775 PMCID: PMC5669265 DOI: 10.1667/rr14766.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The treatment of cancer using targeted radionuclide therapy is of interest to nuclear medicine and radiation oncology because of its potential for killing tumor cells while minimizing dose-limiting toxicities to normal tissue. The ionizing radiations emitted by radiopharmaceuticals deliver radiation absorbed doses over protracted periods of time with continuously varying dose rates. As targeted radionuclide therapy becomes a more prominent part of cancer therapy, accurate models for estimating the biologically effective dose (BED) or equieffective dose (EQD2α/β) will become essential for treatment planning. This study examines the radiobiological impact of the dose rate increase half-time during the uptake phase of the radiopharmaceutical. MDA-MB-231 human breast cancer cells and V79 Chinese hamster lung fibroblasts were irradiated chronically with 662 keV γ rays delivered with time-varying dose rates that are clinically relevant. The temporal dose-rate patterns were: 1. acute, 2. exponential decrease with a half-time of 64 h (Td = 64 h), 3. initial exponential increase to a maximum (half time Ti = 2, 8 or 24 h) followed by exponential decrease (Td = 64 h). Cell survival assays were conducted and surviving fractions were determined. There was a marked reduction in biological effect when Ti was increased. Cell survival data were tested against existing dose-response models to assess their capacity to predict response. Currently accepted models that are used in radiation oncology overestimated BED and EQD2α/β at low-dose rates and underestimated them at high-dose rates. This appears to be caused by an adaptive response arising as a consequence of the initial low-dose-rate phase of exposure. An adaptive response function was derived that yields more accurate BED and EQD2α/β values over the spectrum of dose rates and absorbed doses delivered. Our experimental data demonstrate a marked increase in cell survival when the dose-rate-increase half-time is increased, thereby suggesting an adaptive response arising as a consequence of this phase of exposure. We have modified conventional radiobiological models used in the clinic for brachytherapy and external beams of radiation to account for this phenomenon and facilitate their use for treatment planning in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Jay H. Solanki
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Thomas Tritt
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Jordan B. Pasternack
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Julia J. Kim
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Calvin N. Leung
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Jason D. Domogauer
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Nicholas W. Colangelo
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Venkat R. Narra
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Roger W. Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School Cancer Center, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
3
|
Tomita M, Maeda M. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. JOURNAL OF RADIATION RESEARCH 2015; 56:205-19. [PMID: 25361549 PMCID: PMC4380047 DOI: 10.1093/jrr/rru099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 06/01/2023]
Abstract
Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| |
Collapse
|
4
|
Leonard BE, Thompson RE, Beecher GC. Human Lung Cancer Risks from Radon - Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis. Dose Response 2010; 10:415-61. [PMID: 22942874 DOI: 10.2203/dose-response.09-059.leonard] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m(-3) there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid.
Collapse
|
5
|
Leonard BE, Thompson RE, Beecher GC. Human lung cancer risks from radon - part I - influence from bystander effects - a microdose analysis. Dose Response 2010; 9:243-92. [PMID: 21731539 DOI: 10.2203/dose-response.09-057.leonard] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle "hits" are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid.
Collapse
|
6
|
Leonard BE, Thompson RE, Beecher GC. Human Lung Cancer Risks from Radon - Part II - Influence from Combined Adaptive Response and Bystander Effects - A Microdose Analysis. Dose Response 2010; 9:502-53. [PMID: 22461760 DOI: 10.2203/dose-response.09-058.leonard] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage.
Collapse
|
7
|
Grillo CA, Dulout FN, Güerci AM. Evaluation of radioadaptive response induced in CHO-K1 cells in a non-traditional model. Int J Radiat Biol 2009; 85:159-66. [DOI: 10.1080/09553000902740143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Leonard BE. "Protective bystander effects simulated with the state-vector model"--HeLa x skin exposure to Cs not protective bystander response but mammogram and diagnostic X-rays are. Dose Response 2008; 6:272-82. [PMID: 18846260 DOI: 10.2203/dose-response.07-031.leonard] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The recent Dose Response journal article "Protective Bystander Effects Simulated with the State-Vector Model" (Schollnberger and Eckl 2007) identified the suppressive (below natural occurring, zero primer dose, spontaneous level) dose response for HeLa x skin exposure to (137)Cs gamma rays (Redpath et al 2001) as a protective Bystander Effect (BE) behavior. I had previously analyzed the Redpath et al (2001) data with a Microdose Model and conclusively showed that the suppressive response was from Adaptive Response (AR) radio-protection (Leonard 2005, 2007a). The significance of my microdose analysis has been that low LET radiation induced single (i.e. only one) charged particle traversals through a cell can initiate a Poisson distributed activation of AR radio-protection. The purpose of this correspondence is to clarify the distinctions relative to the BE and the AR behaviors for the Redpath groups (137)Cs data, show conversely however that the Redpath group data for mammography (Ko et al 2004) and diagnostic (Redpath et al 2003) X-rays do conclusively reflect protective bystander behavior and also herein emphasize the need for radio-biologist to apply microdosimetry in planning and analyzing their experiments for BE and AR. Whether we are adamantly pro-LNT, adamantly anti-LNT or, like most of us, just simple scientists searching for the truth in radio-biology, it is important that we accurately identify our results, especially when related to the LNT hypothesis controversy.
Collapse
|