1
|
Martins A, Ferreira BC, Gaspar MM, Vieira S, Lopes J, Viana AS, Paulo A, Mendes F, Campello MPC, Martins R, Reis CP. Enhanced Cytotoxicity against a Pancreatic Cancer Cell Line Combining Radiation and Gold Nanoparticles. Pharmaceutics 2024; 16:900. [PMID: 39065597 PMCID: PMC11280324 DOI: 10.3390/pharmaceutics16070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The present work consisted of an exploratory study aiming to evaluate in vitro the potential of AuNPs during Radiation Therapy (RT) in human pancreatic adenocarcinoma cells. AuNPs coated with hyaluronic and oleic acids (HAOA-AuNPs) or with bombesin peptides (BBN-AuNPs) were used. AuNPs were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering. BxPC-3 tumor cells were irradiated with a 6 MV X-rays beam, in the absence or presence of AuNPs. AFM showed that HAOA-AuNPs and BBN-AuNPs are spherical with a mean size of 83 ± 20 nm and 49 ± 12 nm, respectively. For RT alone, a reduction in cell viability of up to 33 ± 12% was obtained compared to the control (p ≤ 0.0001). HAOA-AuNPs alone at 200 and 400 μM showed a reduction in cell viability of 20 ± 4% and 35 ± 4%, respectively, while for BBN-AuNPs, at 50 and 200 μM, a reduction in cell viability of 25 ± 3% and 37 ± 3% was obtained, respectively, compared to the control (p < 0.0001). At 72 h post-irradiation, a decrease in cell viability of 26 ± 3% and 22 ± 2% between RT + HAOA-AuNPs at 400 μM and RT + BBN-AuNPs at 50 μM, compared to RT alone, was obtained (p < 0.004). The combination of RT with AuNPs led to a significant decrease in cell viability compared to the control, or RT alone, thus representing an improved effect.
Collapse
Affiliation(s)
- Alexandra Martins
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Brigida C Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sandra Vieira
- Champalimaud Foundation, Radiotherapy, 1400-038 Lisboa, Portugal
| | - Joana Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Maria Paula Cabral Campello
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Rui Martins
- Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Wang H, Xu Q, Dong X, Guan Z, Wang Z, Hao Y, Lu R, Chen L. Gold nanoparticles enhances radiosensitivity in glioma cells by inhibiting TRAF6/NF-κB induced CCL2 expression. Heliyon 2023; 9:e14362. [PMID: 36967939 PMCID: PMC10036657 DOI: 10.1016/j.heliyon.2023.e14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Gliomas are inherently difficult to treat by radiotherapy because glioma cells become radioresistant over time. However, combining radiotherapy with a radiosensitizer could be an effective strategy to mitigate the radioresistance of glioma cells. Gold nanoparticles (AuNPs) have emerged as a promising nanomaterial for cancer therapy, but little is known about whether AuNPs and X-ray radiation have cytotoxic synergistic effects against tumors. In this study, we found that the combination of AuNPs and X-ray irradiation significantly reduced the viabilities, as well as the migration and invasion, of glioma cells. Mechanistically, we observed that the AuNPs inhibited radiation-induced CCL2 expression by inhibiting the TRAF6/NF-κB pathway, which likely manifested the synergistic therapeutic effect between the AuNPs and X-ray radiation. The AuNPs also re-sensitized radioresistant glioma cells by inhibiting CCL2 expression. These results were also observed in another tumor cell line with a different molecular pattern, indicating that the underlying mechanism may be ubiquitous through cancer cells. Lastly, using the glioma mouse model, we observed that AuNPs significantly reduced tumor growth in the presence of X-ray radiation compared to radiotherapy alone.
Collapse
|
4
|
Heshmatian B, Behrouzkia Z, Mohammadian M, Moradi Z, Mohammadi Z, Zohdi Aghdam R. Cytotoxic and Radiosensitizing Effects of Folic Acid-Conjugated Gold Nanoparticles and Doxorubicin on Colorectal Cancer Cells. Adv Pharm Bull 2022; 12:772-779. [PMID: 36415636 PMCID: PMC9675912 DOI: 10.34172/apb.2022.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2024] Open
Abstract
Purpose: Radiotherapy is one of the most important therapeutic options used to treat cancers. Radiation effects can be improved using nanoparticles and chemotherapeutic drugs as radiosensitizing agents. The aim of the present study was to evaluate the effects of folic acid-conjugated gold nanoparticles (GNP-F) in combination with doxorubicin (DOX) and x-Ray irradiation in colorectal cancer (CRC) cell line (HT-29). Methods: The cell viability assay (WST-1) was performed to study the cytotoxic effects of different concentrations of DOX and GNP-F after 24 and 48 hours treatments. Then, the effects of the GNP-F, X-Ray irradiation, and DOX drug in single and combined treatments were examined after 24 and 48 hours treatment with effective doses. Likewise, the caspase 3 gene expression ratio and the caspase 3 activity were assessed after 48 h treatment. Moreover, the malondialdehyde (MDA) level was determined in treated and untreated cells. Results: When GNP-F (at a concentration of 70 μM) was combined with X-ray irradiation (2 Gy) and DOX drug, induced more cytotoxic effects compared to the control group. The results of cell viability assay showed that GNP-F + X-Ray in combination with a low concentration of DOX (0.25 × IC50) enhanced the cytotoxic effects of cells compared to related single treatments. Caspase 3 gene expression ratio and caspase 3 activity increased in double and triple combination treatments in comparison with the single groups. Moreover, the MDA level increased in triple combination compared to the single treatments. Conclusion: Our findings confirmed the potential anti-cancer effects of the GNP-F and DOX in combination with X-Ray irradiation in CRC cells.
Collapse
Affiliation(s)
- Behnam Heshmatian
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Biochemistry, School of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Zhino Moradi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Mohammadi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Zohdi Aghdam
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
6
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
7
|
Javani S, Barsbay M, Ghaffarlou M, Mousazadeh N, Mohammadi A, Mozafari F, Rezaeejam H, Nasehi L, Nosrati H, Kavetskyy T, Danafar H. Metronidazole conjugated bismuth sulfide nanoparticles for enhanced X-ray radiation therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Aldahhan R, Almohazey D, Khan FA. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Semin Cancer Biol 2021; 86:1056-1065. [PMID: 34843989 DOI: 10.1016/j.semcancer.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.
Collapse
Affiliation(s)
- Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
9
|
Lee C, Liu X, Zhang W, Duncan MA, Jiang F, Kim C, Yan X, Teng Y, Wang H, Jiang W, Li Z, Xie J. Ultrasmall Gd@Cdots as a radiosensitizing agent for non-small cell lung cancer. NANOSCALE 2021; 13:9252-9263. [PMID: 33982686 PMCID: PMC8552194 DOI: 10.1039/d0nr08166c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-Z nanoparticles (HZNPs) afford high cross-section for high energy radiation and have attracted wide attention as a novel type of radiosensitizer. However, conventional HZNPs are often associated with issues such as heavy metal toxicity, suboptimal pharmacokinetics, and low cellular uptake. Herein, we explore gadolinium-intercalated carbon dots (Gd@Cdots) as a dose-modifying agent for radiotherapy. Gd@Cdots are synthesized through a hydrothermal reaction with an ultrasmall size (∼3 nm) and a high Gd content. Gd@Cdots can significantly increase hydroxyl radical production under X-ray irradiation; this is attributed to not only the photoelectric effects of Gd, but also the surface catalytic effects of carbon. Because carbon is biologically and chemically inert, Gd@Cdots show low Gd leakage and minimal toxicity. In vitro studies confirm that Gd@Cdots can efficiently enhance radiation-induced cellular damage, causing elevated double strand breaks, lipid peroxidation, and mitochondrial depolarization. When tested in mice bearing non-small cell lung cancer H1299 tumors, intravenously injected Gd@Cdots plus radiation leads to improved tumor suppression and animal survival relative to radiation alone while causing no detectable toxicity. Our studies suggest a great potential of Gd@Cdots as a safe and efficient radiosensitizer.
Collapse
Affiliation(s)
- Chaebin Lee
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020; 12:E2021. [PMID: 32718058 PMCID: PMC7464732 DOI: 10.3390/cancers12082021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, a growing interest in the improvement of radiation therapies has led to the development of gold-based nanomaterials as radiosensitizer. Although the radiosensitization effect was initially attributed to a dose enhancement mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of chemical and biological contributions. Despite extensive experimental validation, the debate regarding the mechanism(s) of gold nanoparticle radiosensitization is limiting its clinical translation. This article reviews the current state of knowledge by addressing how gold nanoparticles exert their radiosensitizing effects from a transdisciplinary perspective. We also discuss the current and future challenges to go towards a successful clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| |
Collapse
|
11
|
Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. Eur J Pharm Sci 2020; 153:105487. [PMID: 32707173 DOI: 10.1016/j.ejps.2020.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
In the present study, the effect of functionalized gold nanoclusters (AuNCs) with trastuzumab (Herceptin®) and/or folic acid (FA) as a single and dual-targeted radiosensitizers for the enhancement of megavoltage radiation therapy efficacy was investigated. SK-BR3 breast cancer cells as human epidermal growth factor 2 (HER2) and folate overexpressing cell line and the murine fibroblast (L929) as a control cell line were selected. The cellular uptake was followed using inductively coupled plasma optical emission spectrometry (ICP-OES) that showed AuNCs-FA-HER uptake by SK-BR3 cells was 3 times more than the non-targeted AuNCs after 12 h incubation. MTT and clonogenic assays revealed that the viability and surviving fraction of cancer cells were significantly inhibited by treating with all AuNCs under radiation compared to treating with radiation alone. However, these effects in the dual-targeted AuNCs group (AuNCs-FA-HER) was significantly greater than non-targeted and single-targeted AuNCs groups. Also, apoptosis was evaluated using an Annexin V-FITC/propidium iodide (PI) kit in flow cytometry. All AuNCs, in combination with 4 Gy of photon beam, induced more apoptosis. By fitting the survival fraction data on the linear-quadratic model, the sensitization enhancement factor (SER) of AuNCs, AuNCs-FA, AuNCs-HER, and AuNCs-FA-HER, were obtained 1.17, 1.32, 1.48 and 1.77, respectively. SER for AuNCs-FA-HER was significantly higher than that non-targeted and single-targeted AuNCs (p-value < 0.05) that can be attributed to more internalization in the cancer cells. It was concluded that functionalized AuNCs with both folic acid and Herceptin could represent a promising strategy for increased cellular internalization that improved radiation therapy efficiency in SK-BR3 breast cancer cells.
Collapse
Affiliation(s)
- Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Fatemeh Maghsoudinia
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hasan Motaghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
12
|
Babaye Abdollahi B, Malekzadeh R, Pournaghi Azar F, Salehnia F, Naseri AR, Ghorbani M, Hamishehkar H, Farajollahi AR. Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review. Adv Pharm Bull 2020; 11:212-223. [PMID: 33880343 PMCID: PMC8046397 DOI: 10.34172/apb.2021.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, high atomic number nanoparticles (NPs) have emerged as promising radio-enhancer agents for cancer radiation therapy due to their unique properties. Multi-disciplinary studies have demonstrated the potential of NPs-based radio-sensitizers to improve cancer therapy and tumor control at cellular and molecular levels. However, studies have shown that the dose enhancement effect of the NPs depends on the beam energy, NPs type, NPs size, NPs concentration, cell lines, and NPs delivery system. It has been believed that radiation dose enhancement of NPs is due to the three main mechanisms, but the results of some simulation studies failed to comply well with the experimental findings. Thus, this study aimed to quantitatively evaluate the physical, chemical, and biological factors of the NPs. An organized search of PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was performed. In total, 77 articles were thoroughly reviewed and analyzed. The studies investigated 44 different cell lines through 70 in-vitro and 4 in-vivo studies. A total of 32 different types of single or core-shell NPs in different sizes and concentrations have been used in the studies.
Collapse
Affiliation(s)
- Behnaz Babaye Abdollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Pournaghi Azar
- Department of Operative Density, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salehnia
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Naseri
- Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Hassan M, Nakayama M, Salah M, Akasaka H, Kubota H, Nakahana M, Tagawa T, Morita K, Nakaoka A, Ishihara T, Miyawaki D, Yoshida K, Nishimura Y, Ogino C, Sasaki R. A Comparative Assessment of Mechanisms and Effectiveness of Radiosensitization by Titanium Peroxide and Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061125. [PMID: 32517328 PMCID: PMC7353194 DOI: 10.3390/nano10061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
The development of potentially safe radiosensitizing agents is essential to enhance the treatment outcomes of radioresistant cancers. The titanium peroxide nanoparticle (TiOxNP) was originally produced using the titanium dioxide nanoparticle, and it showed excellent reactive oxygen species (ROS) generation in response to ionizing radiation. Surface coating the TiOxNPs with polyacrylic acid (PAA) showed low toxicity to the living body and excellent radiosensitizing effect on cancer cells. Herein, we evaluated the mechanism of radiosensitization by PAA-TiOxNPs in comparison with gold nanoparticles (AuNPs) which represent high-atomic-number nanoparticles that show a radiosensitizing effect through the emission of secondary electrons. The anticancer effects of both nanoparticles were compared by induction of apoptosis, colony-forming assay, and the inhibition of tumor growth. PAA-TiOxNPs showed a significantly more radiosensitizing effect than that of AuNPs. A comparison of the types and amounts of ROS generated showed that hydrogen peroxide generation by PAA-TiOxNPs was the major factor that contributed to the nanoparticle radiosensitization. Importantly, PAA-TiOxNPs were generally nontoxic to healthy mice and caused no histological abnormalities in the liver, kidney, lung, and heart tissues.
Collapse
Affiliation(s)
- Mennaallah Hassan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Tatsuichiro Tagawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
- Research Facility Center for Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Correspondence: ; Tel.: +81-78-3825687; Fax: +81-78-3826734
| |
Collapse
|
14
|
Z AB, D SG, M A. Rapid Delivery of Gold Nanoparticles into Colon Cancer HT-29 Cells by Electroporation: In-vitro Study. J Biomed Phys Eng 2020; 10:161-166. [PMID: 32337183 PMCID: PMC7166215 DOI: 10.31661/jbpe.v0i0.579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 06/11/2023]
Abstract
BACKGROUND Electroporation has become a routine technique for rapid drug delivery for the treatment of cancer. Because of its simplicity and wide range of application, it has been applied for the transfer of gold-nanoparticles and can facilitate entry into target cancer cells. OBJECTIVE The aim of this study is finding optimal conditions in order to obtain high GNPs- uptake and cell viability by means of electroporation. MATERIALS AND METHODS In this in vitro study, exponential electrical pulse with electric field intensity ranging from 0.2 -2 kV/cm, pulse length of 100 µs and the pulse number of 2 was used. Electroporated cell viability was investigated using MTS assay and GNPs-cellular uptake was assayed using graphite furnace atomic absorption spectrometry (GFAAS). Finally, electroporation results were compared with passive method. RESULTS The maximum uptake occurred at 1.2 to 2 kV/cm and passive method happened. The cell viability of 1.2 kV/cm and passive method was about 90%, while the cell viability in 2 kV/cm drastically decreased to 50%. The findings showed that using two pulses of 1.2 kV/cm and 100 µs is a convenient way and surrogate of passive method for internalizing GNPs into cells. CONCLUSION It is concluded that the electroporation-GNPs method could create an opportunistic context for colon cancer therapy. This type of treatment is especially attractive for highly immunogenic types of cancers in patients who are otherwise not surgical candidates or whose tumors are unresectable.
Collapse
Affiliation(s)
- Arab-Bafrani Z
- PhD, Stem Cell Research Center and Department of Medical Physics-Clinical Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahbazi-Gahrouei D
- PhD, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasian M
- PhD, Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
15
|
Changizi O, Khoei S, Mahdavian A, Shirvalilou S, Mahdavi SR, Keyvan Rad J. Enhanced radiosensitivity of LNCaP prostate cancer cell line by gold-photoactive nanoparticles modified with folic acid. Photodiagnosis Photodyn Ther 2020; 29:101602. [DOI: 10.1016/j.pdpdt.2019.101602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
|
16
|
Kazmi F, Vallis KA, Vellayappan BA, Bandla A, Yukun D, Carlisle R. Megavoltage Radiosensitization of Gold Nanoparticles on a Glioblastoma Cancer Cell Line Using a Clinical Platform. Int J Mol Sci 2020; 21:E429. [PMID: 31936587 PMCID: PMC7013825 DOI: 10.3390/ijms21020429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles (GNPs) have demonstrated significant dose enhancement with kilovoltage (kV) X-rays; however, recent studies have shown inconsistent findings with megavoltage (MV) X-rays. We propose to evaluate the radiosensitization effect on U87 glioblastoma (GBM) cells in the presence of 42 nm GNPs and irradiated with a clinical 6 MV photon beam. Cytotoxicity and radiosensitization were measured using MTS and clonogenic cellular radiation sensitivity assays, respectively. The sensitization enhancement ratio was calculated for 2 Gy (SER2Gy) with GNP (100 μg/mL). Dark field and MTS assays revealed high co-localization and good biocompatibility of the GNPs with GBM cells. A significant sensitization enhancement of 1.45 (p = 0.001) was observed with GNP 100 μg/mL. Similarly, at 6 Gy, there was significant difference in the survival fraction between the GBM alone group (mean (M) = 0.26, standard deviation (SD) = 0.008) and the GBM plus GNP group (M = 0.07, SD = 0.05, p = 0.03). GNPs enabled radiosensitization in U87 GBM cells at 2 Gy when irradiated using a clinical platform. In addition to the potential clinical utility of GNPs, these studies demonstrate the effectiveness of a robust and easy to standardize an in-vitro model that can be employed for future studies involving metal nanoparticle plus irradiation.
Collapse
Affiliation(s)
- Farasat Kazmi
- Early Phase Clinical Trials Unit, Department of Oncology, University of Oxford, Oxford OX3 7LE, UK
| | - Katherine A. Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7LE, UK;
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute (NCIS), Singapore 119228, Singapore;
| | - Aishwarya Bandla
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore (NUS), Singapore 117456, Singapore;
| | - Duan Yukun
- Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS), Singapore 117456, Singapore;
| | - Robert Carlisle
- Department of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
17
|
Akbarzadeh Khiavi M, Safary A, Aghanejad A, Barar J, Rasta SH, Golchin A, Omidi Y, Somi MH. Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
19
|
Moradi Z, Mohammadian M, Saberi H, Ebrahimifar M, Mohammadi Z, Ebrahimpour M, Behrouzkia Z. Anti-cancer effects of chemotherapeutic agent; 17-AAG, in combined with gold nanoparticles and irradiation in human colorectal cancer cells. Daru 2019; 27:111-119. [PMID: 30835081 PMCID: PMC6593031 DOI: 10.1007/s40199-019-00251-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The present study evaluated the anti-cancer effects of irradiation (Ir) alone, Ir after heat shock protein 90 inhibitor; 17-allylamino-17-demethoxygeldanamycin (17-AAG) and gold nanoparticle (GNP) treatments in human colorectal cancer cell line (HCT-116), with the targeting of related mechanisms. METHODS Water-soluble tetrazolium salt-1 assay was utilized to study the cytotoxic effects of 17-AAG, GNP, Ir in single and combination cases on the cell viability of HCT-116 cells. The cells were examined with DNA fragmentation electrophoresis and evaluated for apoptosis induction. Caspase-3 expression as a critical apoptosis element in protein level was detected by western blotting. RESULTS Treatment with 17-AAG in a dose dependent manner for 24 h inhibited the cellular viability of HCT-116 cells. GNP at a dose of 70 μM had the lowest cytotoxic effects and was thus selected for combination treatment studies. Based on the results, GNP at a dose of 70 μM did not have a significant effect on cellular viability of HCT-116. In contrast, the evaluation of double and triple combinations, GNP with Ir (2 Gy of 6 MV X-ray radiation) and 17-AAG in double combinations induced significant cytotoxicity. Both DNA damage pattern and caspase-3 protein upregulation were present in Ir,GNP/17-AAG,GNP and Ir,17-AAG combinations compared to single treatments. Furthermore, in the three combination of GNP,Ir,17-AAG, radiosensitization effects (increased caspase-3 expression) occurred with a minimum concentration of 17-AAG. CONCLUSION According to the results of this study, 17-AAG as chemotherapeutic agent in combination with Ir and GNP exerts noticeable anti-cancer effects, inhibited cell viability, and increased apoptosis occurrence by upregulating caspase-3 expression. It is suggested that these combinations should be more evaluated as a promising candidate for colorectal cancer treatment. Graphical abstract Anti-cancer effects of chemotherapeutic agent; 17-AAG, in combined with gold nanoparticles and irradiation in human colorectal cancer cells.
Collapse
Affiliation(s)
- Zhino Moradi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Saberi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Zeinab Mohammadi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahnaz Ebrahimpour
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Abstract
Radiation therapy has made tremendous progress in oncology over the last decades due to advances in engineering and physical sciences in combination with better biochemical, genetic and molecular understanding of this disease. Local delivery of optimal radiation dose to a tumor, while sparing healthy surrounding tissues, remains a great challenge, especially in the proximity of vital organs. Therefore, imaging plays a key role in tumor staging, accurate target volume delineation, assessment of individual radiation resistance and even personalized dose prescription. From this point of view, radiotherapy might be one of the few therapeutic modalities that relies entirely on high-resolution imaging. Magnetic resonance imaging (MRI) with its superior soft-tissue resolution is already used in radiotherapy treatment planning complementing conventional computed tomography (CT). Development of systems integrating MRI and linear accelerators opens possibilities for simultaneous imaging and therapy, which in turn, generates the need for imaging probes with therapeutic components. In this review, we discuss the role of MRI in both external and internal radiotherapy focusing on the most important examples of contrast agents with combined therapeutic potential.
Collapse
|
21
|
Raeisi F, Shahbazi-Gahrouei D, Raeisi E, Heidarian E. Evaluation of the Radiosensitizing Potency of Bromelain for Radiation Therapy of 4T1 Breast Cancer Cells. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:68-74. [PMID: 30967992 PMCID: PMC6419564 DOI: 10.4103/jmss.jmss_25_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) remains the leading cause of death in women worldwide, despite the improvements of cancer screening and treatment methods. Recently, development of novel anticancer drugs for the improved prevention and treatment of BC is in the center of research. The anticancer effects of bromelain, as enzyme extract derived from the pineapples, contains chemicals that interfere with the growth of tumor cells. The aim of this study was to evaluate the effect of radiosensitizing of bromelain in 4T1 BC cells. This investigation utilized the 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide assay to characterize the cytotoxicity of bromelain. Colony formation method was used to establish the truth of the capability of bromelain to make sensitive to radiation therapy. Flowcytometry performed to define the contribution the apoptosis effect to bromelain mediated radiosensitization of 4T1 cells. Bromelain reduced growth and proliferation of 4T1 cell as a concentration-dependence manner significantly. The survival of 4T1 cancer cells was decreased after combined treatment in a number and size-dependent manner with regard to the control group (P < 0.05). Combination of bromelain with radiation does not influence 4T1 cell apoptosis. The results suggested that bromelain can inhibit the growth and proliferation and reduce survival of 4T1 BC cells and might be used as a candidate radiosensitizer in BC patient.
Collapse
Affiliation(s)
- Farzaneh Raeisi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Raeisi
- Department of Medical Physics and Radiology, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
22
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Thioredoxin Reductase Activity Predicts Gold Nanoparticle Radiosensitization Effect. NANOMATERIALS 2019; 9:nano9020295. [PMID: 30791480 PMCID: PMC6409576 DOI: 10.3390/nano9020295] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (GNPs) have been shown to be effective contrast agents for imaging and emerge as powerful radiosensitizers, constituting a promising theranostic agent for cancer. Although the radiosensitization effect was initially attributed to a physical mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of oxidative stress in this process. This work evidences the central role played by thioredoxin reductase (TrxR) in the GNP-induced radiosensitization. A cell type-dependent reduction in TrxR activity was measured in five different cell lines incubated with GNPs leading to differences in cell response to X-ray irradiation. Correlation analyses demonstrated that GNP uptake and TrxR activity inhibition are associated to a GNP radiosensitization effect. Finally, Kaplan-Meier analyses suggested that high TrxR expression is correlated to low patient survival in four different types of cancer. Altogether, these results enable a better understanding of the GNP radiosensitization mechanism, which remains a mandatory step towards further use in clinic. Moreover, they highlight the potential application of this new treatment in a personalized medicine context.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|
23
|
Affiliation(s)
- John E. Moulder
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Abbasian M, Baharlouei A, Arab-Bafrani Z, Lightfoot DA. Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells. J Cancer Res Clin Oncol 2019; 145:97-107. [PMID: 30341685 DOI: 10.1007/s00432-018-2769-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE High-linear energy transfer (high LET) irradiation has significant cytotoxic effects on different cancerous stem-like cells (CSLCs) such as colorectal CSLCs. A review of the literature has indicated that the presence of gold nanoparticles (GNPs) enables low-LET irradiation to produce highly non-homogeneous dose distributions like high-LET irradiation. The purpose of this study was to evaluate the radioresponsiveness of HT29 colorectal CSLCs under low-LET irradiation (X-ray) and in the presence of GNPs. METHODS Radioresponsiveness was evaluated using the ϒ-H2AX foci formation assay, the clonogenic assay, the cell cycle progression assay and analyses of radiobiological parameters. RESULTS In the presence of GNPs, the survival fraction of HT29 CSLCs was significantly reduced and caused significant changes in the radiobiological parameters after irradiation. In addition, ϒ-H2AX assay showed that in the presence of GNPs, the persistent DNA double-strand breaks were significantly increased in irradiated HT29 CSLCs. The relative biological effectiveness value of GNPs with X-rays was about 1.6 for HT-29 CSLCs at the 10% of cell survival fraction (D10 level) when compared to X-rays alone. CONCLUSION Therefore, the combination of GNPs with X-ray irradiation has the potential to kill HT29 CSLCs greater than the X-ray alone, and may be considered as an alternative for high-LET irradiation.
Collapse
Affiliation(s)
- Mahdi Abbasian
- Stem Cell Research Center, Golestan University of Medical Science, Gorgān, Iran
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azam Baharlouei
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Microbiology, Southern Illinois University at Carbondale, Carbondale, IL, 62901, USA
| | - Zahra Arab-Bafrani
- Stem Cell Research Center, Golestan University of Medical Science, Gorgān, Iran.
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgān, Iran.
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgān, Iran.
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
25
|
Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int J Mol Sci 2018; 19:E4031. [PMID: 30551592 PMCID: PMC6320918 DOI: 10.3390/ijms19124031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Nanoparticles have unique, size-dependent properties, which means they are widely used in various branches of industry. The ability to control the properties of nanoparticles makes these nanomaterials very interesting for medicine and pharmacology. The application of nanoparticles in medicine is associated with the design of specific nanostructures, which can be used as novel diagnostic and therapeutic modalities. There are a lot of applications of nanoparticles, e.g., as drug delivery systems, radiosensitizers in radiation or proton therapy, in bioimaging, or as bactericides/fungicides. This paper aims to introduce the characteristics of noble metal-based nanoparticles with particular emphasis on their applications in medicine and related sciences.
Collapse
Affiliation(s)
- Bartosz Klębowski
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Joanna Depciuch
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Magdalena Parlińska-Wojtan
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Medical College, 30-663 Krakow, Poland.
| |
Collapse
|
26
|
Benton J, Williams R, Patel A, Meichner K, Tarigo J, Nagata K, Pethel T, Gogal R. Gold nanoparticles enhance radiation sensitization and suppress colony formation in a feline injection site sarcoma cell line, in vitro. Res Vet Sci 2018; 117:104-110. [DOI: 10.1016/j.rvsc.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022]
|
27
|
Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy. Theranostics 2018; 8:1782-1797. [PMID: 29556356 PMCID: PMC5858500 DOI: 10.7150/thno.22621] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics, which has the potential to significantly improve tumor response and reduce the side effects of both RT and chemotherapy.
Collapse
Affiliation(s)
- Jeffrey R. Ashton
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| |
Collapse
|
28
|
Enferadi M, Fu SY, Hong JH, Tung CJ, Chao TC, Wey SP, Chiu CH, Wang CC, Sadeghi M. Radiosensitization of ultrasmall GNP-PEG-cRGDfK in ALTS1C1 exposed to therapeutic protons and kilovoltage and megavoltage photons. Int J Radiat Biol 2018; 94:124-136. [PMID: 29172866 DOI: 10.1080/09553002.2018.1407462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE One of the promising radiosensitizers is the ultrasmall gold nanoparticle (GNP) with a hydrodynamic diameter <3 nm. We studied functionalized ultrasmall GNPs (1.8 nm diameter) coated by polyethylene glycol (PEG) and conjugated with cyclic RGDfK (2.6 nm hydrodynamic diameter) for targeting of alpha(v) beta(3) integrin (αvβ3) in the murine ALTS1C1 glioma cell line. MATERIALS AND METHODS We investigated the uptake, toxicity and radiosensitivity of GNP-PEG-cRGDfKs in ALTS1C1 cells exposed to protons, kilovoltage photons and megavoltage photons. The in vitro uptake and toxicity of GNPs in the hepatocytes and Kupffer cells were assessed for murine AML12 hepatocyte and RAW 264.7 macrophage cell lines. The in vivo biodistribution of GNPs in the ALTS1C1 tumor model was tested using the inductively coupled plasma mass spectrometry. RESULTS Results indicated GNPs accumulated in the cytoplasm with negligible toxicity for a moderate concentration of GNPs. Observed sensitizer enhancement ratios and dose enhancement factors are 1.21-1.66 and 1.14-1.33, respectively, for all radiations. CONCLUSION Ultrasmall GNP-PEG-cRGD can be considered as a radiosensitizer. For radiotherapy applications, the delivery method should be developed to increase the GNP uptake in the tumor and decrease the uptakes in undesirable organs.
Collapse
Affiliation(s)
- Milad Enferadi
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan
| | - Sheng-Yung Fu
- b Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan.,c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Ji-Hong Hong
- c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan.,d Radiation Biology Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Chuan-Jong Tung
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan.,e Medical Physics Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Tsi-Chian Chao
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan.,e Medical Physics Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Shiaw-Pyng Wey
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan
| | - Chun-Hui Chiu
- f Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology , Chang Gung University of Science and Technology , Tao-Yuan , Taiwan
| | - Chun-Chieh Wang
- c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Mahdi Sadeghi
- g Medical Physics Department, School of Medicine , Iran University of Medical Science , Tehran , Iran
| |
Collapse
|
29
|
Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv 2018. [DOI: 10.1039/c7ra11116a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, AS1411 aptamer conjugated gold nanoclusters (GNCs) have been introduced as a targeted radiosensitizer for enhancing megavoltage radiation therapy efficacy.
Collapse
Affiliation(s)
- Fatemeh Ghahremani
- Department of Medical Physics
- School of Medicine
- Isfahan University of Medical Sciences
- Isfahan 81746-73461
- Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics
- School of Medicine
- Isfahan University of Medical Sciences
- Isfahan 81746-73461
- Iran
| | - Amirhosein Kefayat
- Cancer Prevention Research Center
- Isfahan University of Medical Sciences
- Isfahan 81746-73461
- Iran
- Department of Oncology
| | - Hasan Motaghi
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Department of Physiology
- Applied Physiology Research Center
- Cardiovascular Research Institute
- Isfahan University of Medical Sciences
- Isfahan 81746-73461
| |
Collapse
|