1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Kim YJ, Lee HS, Kim D, Byun HK, Koom WS, Koh W. Bilayer 3D co-culture platform inducing the differentiation of normal fibroblasts into cancer-associated fibroblast like cells: New in vitro source to obtain cancer-associated fibroblasts. Bioeng Transl Med 2025; 10:e10708. [PMID: 39801758 PMCID: PMC11711222 DOI: 10.1002/btm2.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study. Fibroblasts remained viable throughout the culture periods and showed enhanced proliferation when co-cultured with cancer cells. Morphological changes in the co-cultured fibroblasts resembling CAFs were observed, especially in the 3D microenvironment. The mRNA expression levels of CAF-related markers were significantly upregulated in 3D, but not in 2D co-culture. Proteomic analysis identified upregulated proteins associated with CAFs, further confirming the transformation of normal fibroblasts into CAF within the proposed 3D co-culture platform. Moreover, co-culture with CAF induced radio- and chemoresistance in pancreatic cancer cells (PANC-1). Survival rate of cancer cells post-irradiation and gemcitabine resistance increased significantly in the co-culture setting, highlighting the role of CAFs in promoting cancer cell survival and therapeutic resistance. These findings would contribute to understanding molecular and phenotypic changes associated with CAF activation and provide insights into potential therapeutic strategies targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Radiation Oncology, Yonsei Cancer CenterYonsei University College of MedicineSeoulSouth Korea
| | - Hyeon Song Lee
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulSouth Korea
| | - Dohyun Kim
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulSouth Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance HospitalYonsei University College of MedicineYonginSouth Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer CenterYonsei University College of MedicineSeoulSouth Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulSouth Korea
| |
Collapse
|
3
|
Zhang Y, Liu D, Qiao B, Luo Y, Zhang L, Cao Y, Ran H, Yang C. Breakthrough of Hypoxia Limitation by Tumor-Targeting Photothermal Therapy-Enhanced Radiation Therapy. Int J Nanomedicine 2024; 19:6499-6513. [PMID: 38946887 PMCID: PMC11214800 DOI: 10.2147/ijn.s450124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers. Materials and Methods In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria. The effect of the photothermal therapy-enhanced radiation therapy was also examined to assess the alleviation of hypoxia and the enhancement of radiation sensitivity. Results The PIBD nanoparticles exhibited strong capacity in mitochondrial targeting and selective tumor accumulation. Upon activation by 808 nm laser irradiation, the nanoparticles effectively alleviated local hypoxia by photothermal effect enhanced blood supplying to improve oxygen content, thereby enhancing the ROS production for effective RT. Comparative studies revealed that PIBD-induced RT significantly outperformed conventional RT in treating hypoxic tumors. Conclusion This design of tumor-targeting photothermal therapy-enhanced radiation therapy nanomedicine would advance the development of targeted drug delivery system for effective RT regardless of hypoxic microenvironment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dang Liu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bin Qiao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chao Yang
- Department of Radiology, Jiulongpo District People’s Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
5
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
6
|
Li X, Liu H, Zhou X, Zhou Y, Zhang Y, Liou YL, Zeng M, Zhu H. PAX1 hypomethylation as a prognostic biomarker for radioresistance of cervical cancer. Clin Epigenetics 2023; 15:123. [PMID: 37533109 PMCID: PMC10398938 DOI: 10.1186/s13148-023-01538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND PAX1 gene methylation plays an important role in the development of cervical cancer. However, its prognostic value after radiotherapy for locally advanced cervical cancer is unknown, so this study aimed to investigate the value of PAX1 gene methylation for predicting the sensitivity of radiotherapy for cervical cancer. METHODS We selected 125 patients with primary cervical cancer who underwent concurrent chemo-radiotherapy as the study population, quantitative methylation-specific polymerase chain reaction (QMSP) was used for detecting PAX1 methylation status of cervical exfoliated cells. Logistic regression model was used to analyze the risk factors associated with the short-term efficacy and to establish a prediction model of radiotherapy sensitivity based on PAX1 gene methylation. Cell viability after radiation of Hela and SiHa cells transfected with PAX1 or control vector was evaluated by CCK8. Furthermore, RNA-Seq analyses identified different expressed genes (DEGs) in PAX1 overexpressed SiHa cells. Gene Ontology (GO) and pathway enrichment analysis was carried out to determine the biological function of DEGs. RESULTS PAX1 methylation level was associated with HPV16/18-positive rate. PAX1 hypomethylation was found to be a risk factor for tumor residual after chemo-radiotherapy. A nomogram containing the risk factors for PAX1 methylation status, lymph node metastasis, pathological type and tumor size was further constructed to predict the probability of tumor residual after chemo-radiotherapy (AUC = 0.823, 95% CI 0.736-0.910). High PAX1 protein level was more likely to cause radioresistance in both Hela and SiHa cells. Transcriptomic sequencing of PAX1 overexpressed and control cells identified 615 differentially expressed genes, and GO enrichment analysis suggested that PAX1 may be involved in the regulation of signaling receptor activity and response to viruses. CONCLUSION PAX1 hypomethylation status could be used as a promising biomarker to predict radioresistance in cervical cancer. This further provides a new idea for the individualized treatment strategy of simultaneous radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Xue Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China.
| |
Collapse
|
7
|
Hami R, Apeke S, Redou P, Gaubert L, Dubois LJ, Lambin P, Visvikis D, Boussion N. Predicting the Tumour Response to Radiation by Modelling the Five Rs of Radiotherapy Using PET Images. J Imaging 2023; 9:124. [PMID: 37367472 DOI: 10.3390/jimaging9060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells. To understand these interactions, five major biologic concepts called the "5 Rs" have emerged. These concepts include reoxygenation, DNA damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects of radiation on tumour growth. In this model, the oxygen level was varied in both time and space. When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was taken in account. This model also considered the repair of cells by giving a different probability of survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control probability curves were simulated. The result showed the evolution of tumours and normal cells. The increase in the cell number after radiation was seen in both normal and malignant cells, which proves that repopulation was included in this model. The proposed model predicts the tumour response to radiation and forms the basis for a more patient-specific clinical tool where related biological data will be included.
Collapse
Affiliation(s)
- Rihab Hami
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
| | - Sena Apeke
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Pascal Redou
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Laurent Gaubert
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Ludwig J Dubois
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Dimitris Visvikis
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| | - Nicolas Boussion
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| |
Collapse
|
8
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
9
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
10
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
11
|
Cellular plasticity upon proton irradiation determines tumor cell radiosensitivity. Cell Rep 2022; 38:110422. [PMID: 35196495 DOI: 10.1016/j.celrep.2022.110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years. However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase (ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species, DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for ALDH-positive CSCs. In this study, we analyze CSC marker dynamics in prostate cancer, head and neck cancer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher potential to target CSCs through induction of complex DNA damages, lower rates of cellular senescence, and minor alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer cells between the two irradiation types.
Collapse
|
12
|
Mare M, Colarossi L, Veschi V, Turdo A, Giuffrida D, Memeo L, Stassi G, Colarossi C. Cancer Stem Cell Biomarkers Predictive of Radiotherapy Response in Rectal Cancer: A Systematic Review. Genes (Basel) 2021; 12:genes12101502. [PMID: 34680897 PMCID: PMC8535834 DOI: 10.3390/genes12101502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rectal cancer (RC) is one of the most commonly diagnosed and particularly challenging tumours to treat due to its location in the pelvis and close proximity to critical genitourinary organs. Radiotherapy (RT) is recognised as a key component of therapeutic strategy to treat RC, promoting the downsizing and downstaging of large RCs in neoadjuvant settings, although its therapeutic effect is limited due to radioresistance. Evidence from experimental and clinical studies indicates that the likelihood of achieving local tumour control by RT depends on the complete eradication of cancer stem cells (CSC), a minority subset of tumour cells with stemness properties. METHODS A systematic literature review was conducted by querying two scientific databases (Pubmed and Scopus). The search was restricted to papers published from 2009 to 2021. RESULTS After assessing the quality and the risk of bias, a total of 11 studies were selected as they mainly focused on biomarkers predictive of RT-response in CSCs isolated from patients affected by RC. Specifically these studies showed that elevated levels of CD133, CD44, ALDH1, Lgr5 and G9a are associated with RT-resistance and poor prognosis. CONCLUSIONS This review aimed to provide an overview of the current scenario of in vitro and in vivo studies evaluating the biomarkers predictive of RT-response in CSCs derived from RC patients.
Collapse
Affiliation(s)
- Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy; (M.M.); (D.G.)
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy; (L.C.); (L.M.); (C.C.)
| | - Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy;
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy; (M.M.); (D.G.)
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy; (L.C.); (L.M.); (C.C.)
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-0813
| | - Cristina Colarossi
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy; (L.C.); (L.M.); (C.C.)
| |
Collapse
|
13
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
14
|
Zhou X, You M, Wang F, Wang Z, Gao X, Jing C, Liu J, Guo M, Li J, Luo A, Liu H, Liu Z, Chen C. Multifunctional Graphdiyne-Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100556. [PMID: 33949734 DOI: 10.1002/adma.202100556] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/09/2023]
Abstract
Radioresistance is an important challenge for clinical treatments. The main causes of radioresistance include hypoxia in the tumor microenvironment, the antioxidant system within cancer cells, and the upregulation of DNA repair proteins. Here, a multiple radiosensitization strategy of high-Z-element-based radiation enhancement is designed, attenuating hypoxia and microRNA therapy. The novel 2D graphdiyne (GDY) can firmly anchor and disperse CeO2 nanoparticles to form GDY-CeO2 nanocomposites, which exhibit superior catalase-mimic activity in decomposing H2 O2 to O2 to significantly alleviate tumor hypoxia, promote radiation-induced DNA damage, and ultimately inhibit tumor growth in vivo. The miR181a-2-3p (miR181a) serum levels in patients are predictive of the response to preoperative radiotherapy in locally advanced esophageal squamous cell carcinoma (ESCC) and facilitate personalized treatment. Moreover, miR181a can act as a radiosensitizer by directly targeting RAD17 and regulating the Chk2 pathway. Subsequently, the GDY-CeO2 nanocomposites with miR181a are conjugated with the iRGD-grafted polyoxyethylene glycol (short for nano-miR181a), which can increase the stability, efficiently deliver miR181a to tumor, and exhibit low toxicity. Notably, nano-miR181a can overcome radioresistance and enhance therapeutic efficacy both in a subcutaneous tumor model and human-patient-derived xenograft models. Overall, this GDY-CeO2 nanozyme and miR181a-based multisensitized radiotherapy strategy provides a promising therapeutic approach for ESCC.
Collapse
Affiliation(s)
- Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Fuhui Wang
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenzhen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xingfa Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100039, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100039, China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100039, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100039, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
15
|
Rückert M, Flohr AS, Hecht M, Gaipl US. Radiotherapy and the immune system: More than just immune suppression. STEM CELLS (DAYTON, OHIO) 2021; 39:1155-1165. [PMID: 33961721 DOI: 10.1002/stem.3391] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 11/07/2022]
Abstract
Radiotherapy (RT) is still one of the standard cancer therapies, with up to two third of all cancer patients with solid tumors being irradiated in the course of their disease. The aim of using ionizing radiation in fractionated treatment schedules was always to achieve local tumor control by inducing DNA damage which can be repaired by surrounding normal tissue but leads to cell death in tumor cells. Meanwhile, it is known that RT also has immunological effects reshaping the tumor microenvironment. Nevertheless, RT alone often fails to elicit potent antitumor immune responses as these effects can be immunostimulatory as well as immunosuppressive. Here, we discuss how immunotherapies can be exploited in combined therapies to boost RT-induced antitumor immune responses or to counteract preexisting and RT-mediated immunosuppression to improve local and systemic tumor control. Furthermore, we highlight some parameters of radioimmunotherapies (RITs) which are under investigation for potential optimizations and how RIT approaches are tested in first phases II and III trials. Finally, we discuss how RT might affect normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ann-Sophie Flohr
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
16
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
17
|
Peng X, Wei Z, Gerweck LE. Making radiation therapy more effective in the era of precision medicine. PRECISION CLINICAL MEDICINE 2020; 3:272-283. [PMID: 35692625 PMCID: PMC8982539 DOI: 10.1093/pcmedi/pbaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer has become a leading cause of death and constitutes an enormous burden worldwide. Radiation is a principle treatment modality used alone or in combination with other forms of therapy, with 50%–70% of cancer patients receiving radiotherapy at some point during their illness. It has been suggested that traditional radiotherapy (daily fractions of approximately 1.8–2 Gy over several weeks) might select for radioresistant tumor cell sub-populations, which, if not sterilized, give rise to local treatment failure and distant metastases. Thus, the challenge is to develop treatment strategies and schedules to eradicate the resistant subpopulation of tumorigenic cells rather than the predominant sensitive tumor cell population. With continued technological advances including enhanced conformal treatment technology, radiation oncologists can increasingly maximize the dose to tumors while sparing adjacent normal tissues, to limit toxicity and damage to the latter. Increased dose conformality also facilitates changes in treatment schedules, such as changes in dose per treatment fraction and number of treatment fractions, to enhance the therapeutic ratio. For example, the recently developed large dose per fraction treatment schedules (hypofractionation) have shown clinical advantage over conventional treatment schedules in some tumor types. Experimental studies suggest that following large acute doses of radiation, recurrent tumors, presumably sustained by the most resistant tumor cell populations, may in fact be equally or more radiation sensitive than the primary tumor. In this review, we summarize the related advances in radiotherapy, including the increasing understanding of the molecular mechanisms of radioresistance, and the targeting of these mechanisms with potent small molecule inhibitors, which may selectively sensitize tumor cells to radiation.
Collapse
Affiliation(s)
- Xingchen Peng
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leo E Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Danielsson A, Barreau K, Kling T, Tisell M, Carén H. Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clin Epigenetics 2020; 12:26. [PMID: 32046773 PMCID: PMC7014676 DOI: 10.1186/s13148-020-0817-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. METHODS We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. RESULTS Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. CONCLUSIONS DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.
Collapse
Affiliation(s)
- Anna Danielsson
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristell Barreau
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
A. Zamulaeva I, A. Churyukina K, N. Matchuk O, A. Ivanov A, O. Saburov V, L. Zhuze A. Dimeric bisbenzimidazoles DB(n) in combination with ionizing radiation decrease number and clonogenic activity of MCF-7 breast cancer stem cells. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Hamada N, Mothersill CE, Iliakis G. Preface to the IJRB 60th anniversary special issue "back to our future". Int J Radiat Biol 2019; 95:799-801. [PMID: 31156009 DOI: 10.1080/09553002.2019.1627113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nobuyuki Hamada
- a Radiation Safety Research Center, Nuclear Technology Research Laboratory , Central Research Institute of Electric Power Industry (CRIEPI) , Tokyo 201-8511 , Japan
| | | | - George Iliakis
- c Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|
22
|
Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel) 2019; 11:cancers11050616. [PMID: 31052565 PMCID: PMC6562868 DOI: 10.3390/cancers11050616] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells.
Collapse
Affiliation(s)
- Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
| | - Jacqueline Nathansen
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sebastian I Schniewind
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Franziska Schwarz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| |
Collapse
|