1
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
2
|
John S, Rathinavelu S, Mary SMS, Nambi IM, Babu SM, Thomas T, Singh S. Solar-driven hybrid photo-Fenton degradation of persistent antibiotic ciprofloxacin by zinc ferrite-titania heterostructures: degradation pathway, intermediates, and toxicity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39605-39617. [PMID: 36598720 DOI: 10.1007/s11356-022-24926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Present work puts forward an efficient strategy to degrade one of the persistent antibiotic contaminants, ciprofloxacin (CIP). Hybrid advanced oxidation process (HAOP) is tailored with a synergy effect between photocatalysis and photo-Fenton catalysis on zinc ferrite-titania heterostructured composite (ZFO-TiO2). The ZFO-TiO2 heterostructured composite enables heterogenous surfaces for enhanced charge separation where HAOP is implemented for CIP degradation with the aid of class AAA solar simulator. The results reveal an enhanced degradation rate of CIP (kobs = 0.255 min-1), noticeably higher than the conventional TiO2-based photocatalysis. The HAOP system strongly enhances the reaction rates showing five times higher performance as compared to TiO2-based photocatalysis. The substitution reactions for degradation of CIP into its intermediates were analyzed by LC-MS/MS, and the plausible degradation pathways have been graphically modeled identifying 3-phenyl-1-propanol and phenol molecules as less toxic end products. Toxicity of the photodegraded samples reveal 18.1 ± 1.24% inhibition of V. fischeri at the end of 60-min treatment indicating reduced toxicity of CIP contaminated samples. Antimicrobial inhibition studies on E. coli also corroborate an effective CIP removal (~ 100%) in less than 90 min. The study puts forward a novel ZFO-TiO2 composite HAOP system for efficient and rapid mineralization of an antibiotic pollutant, extendable towards wide range of pharmaceutical drug degradation studies.
Collapse
Affiliation(s)
- Sangeeth John
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, India, 600025
| | | | | | | | | | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Chennai, India, 600036
| | - Shubra Singh
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, India, 600025.
- Centre for Energy Storage Technologies, Anna University, Chennai, 600025, India.
| |
Collapse
|
3
|
A facile method for efficient synergistic oxidation of Fe2+ in phosphorus-sulfur mixed acid system with a mixture of oxygen and ozone. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Abstract
The increasing consumption of pharmaceutical and personal care products (PPCPs) by humankind has been causing an accumulation of contaminants (commonly referred to as contaminants of emerging concern), in effluents and water resources. Ozonation can be used to improve the removal of these contaminants during water treatment to alleviate this burden. In this work, the degradation of methyl (MP), propylparaben (PP), paracetamol (PCT), sulfamethoxazole (SMX), and carbamazepine (CBZ) by ozonation was assessed both for individual compounds and for mixtures with increasing complexity (two to five compounds). Ozonation was performed at pH3 to gain an insight on the exclusive action of molecular ozone as oxidizing agent. The degradation of contaminants was described as a function of time and transferred ozone dose, and the corresponding pseudo-first order kinetic rate constants (k’) were determined. PPCPs were degraded individually within 1.5 to 10 min. CBZ was the most quickly degraded (k’ = 1.25 min−1) and MP the most resistant to ozone (k’ = 0.25 min−1). When in the mixture, the degradation rate of the contaminants was slower. For parabens, the increase of the number of compounds in the mixture led to an exponential decrease of the k’ values. Moreover, the presence of more PPCPs within the mixture increased energy consumption associated with the treatment, thereby reflecting higher economic costs.
Collapse
|
5
|
Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010008] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Advanced oxidation procedures (AOPs) refer to a variety of technical procedures that produce OH radicals to sufficiently oxidize wastewater, organic pollutant streams, and toxic effluents from industrial, hospital, pharmaceutical and municipal wastes. Through the implementation of such procedures, the (post) treatment of such waste effluents leads to products that are more susceptible to bioremediation, are less toxic and possess less pollutant load. The basic mechanism produces free OH radicals and other reactive species such as superoxide anions, hydrogen peroxide, etc. A basic classification of AOPs is presented in this short review, analyzing the processes of UV/H2O2, Fenton and photo-Fenton, ozone-based (O3) processes, photocatalysis and sonolysis from chemical and equipment points of view to clarify the nature of the reactive species in each AOP and their advantages. Finally, combined AOP implementations are favored through the literature as an efficient solution in addressing the issue of global environmental waste management.
Collapse
|
6
|
Zamani L, Sadjadi S, Ashouri F, Jahangiri-Rad M. Carbamazepine removal from aqueous solution by synthesized reduced graphene oxide-nano zero valent iron (Fe 0-rGO) composite: theory, process optimization, and coexisting drugs effects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2557-2577. [PMID: 34810331 DOI: 10.2166/wst.2021.457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthesized Fe0-rGO nanocomposite with ratio of 1/1 (w/w) was prepared and has been used as adsorbent for the removal of Carbamazepine (CBZ) from aqueous solution. The adsorbent was characterized by various techniques such as Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. Linear experiments were performed to compare the best fitting isotherms and kinetics. The Freundlich isotherm (R2>0.90) and pseudo second order kinetic (R2>0.99) fitted well the experimental data. On the basis of the Langmuir isotherm, the maximum adsorption capacity of Fe0-rGO for CBZ was up to 50 mg g-1 at 30 °C. The pH, adsorbent dose, and initial concentration of CBZ were observed to be the leading parameters that affected the removal of CBZ considering the analysis of variance (ANOVA; p<0.05). The optimum process value of variables obtained by numerical optimization corresponds to pH 3.07, an adsorbent dose of 36.2 mg, an initial CBZ concentration of 5 mg L-1 and at 30.15 °C. The results of optimum conditions reveal that a maximum of 94% removal efficiency can be achieved; whereas, this phenomenon was independent of temperature (p-value>0.05). Moreover, Fe0-rGO can be used to remove diclofenac (DIC) and cetirizine (CTZ) simultaneously. To sum up, the Fe0-rGO is a promising adsorbent not only for the efficient removal of CBZ but also for the reduction of coexisting drugs in aqueous solution.
Collapse
Affiliation(s)
- Leila Zamani
- Department of Environmental Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sodeh Sadjadi
- Material and Nuclear Fuel School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Jahangiri-Rad
- Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran E-mail:
| |
Collapse
|
7
|
Reggiane de Carvalho Costa L, Guerra Pacheco Nunes K, Amaral Féris L. Ultrasound as an Advanced Oxidative Process: A Review on Treating Pharmaceutical Compounds. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Letícia Reggiane de Carvalho Costa
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Keila Guerra Pacheco Nunes
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Liliana Amaral Féris
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| |
Collapse
|
8
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
9
|
Liu P, Wu Z, Abramova AV, Cravotto G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. ULTRASONICS SONOCHEMISTRY 2021; 74:105566. [PMID: 33975189 PMCID: PMC8122362 DOI: 10.1016/j.ultsonch.2021.105566] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic residues in water are general health and environmental risks due to the antibiotic-resistance phenomenon. Sonication has been included among the advanced oxidation processes (AOPs) used to remove recalcitrant contaminants in aquatic environments. Sonochemical processes have shown substantial advantages, including cleanliness, safety, energy savings and either negligible or no secondary pollution. This review provides a wide overview of the different protocols and degradation mechanisms for antibiotics that either use sonication alone or in hybrid processes, such as sonication with catalysts, Fenton and Fenton-like processes, photolysis, ozonation, etc.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Anna V Abramova
- Federal State Budgetary Institution of Science N.S. Kurnakov Institute of General Inorganic Chemistry of the Russian Academy of Sciences, GSP-1, V-71, Leninsky Prospekt 31, 119991 Moscow, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| |
Collapse
|
10
|
Abrile MG, Ciucio MM, Demarchi LM, Bono VM, Fiasconaro ML, Lovato ME. Degradation and mineralization of the emerging pharmaceutical pollutant sildenafil by ozone and UV radiation using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23868-23886. [PMID: 33219934 DOI: 10.1007/s11356-020-11717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and their degradation products which are present in wastewater and superficial waters are becoming an ecological issue. This research investigated the degradation and mineralization of synthetic solutions of the pharmaceutical compound sildenafil citrate (SC) by single ozonation and ozonation jointed with UV radiation (O3/UV). The effects of initial drug concentration (50-125 mg L-1), inlet ozone concentration (35-125 g Nm-3), and UV radiation on SC degradation and decrease of total organic carbon (TOC) were investigated using response surface methodology based on a central composite experimental design. Through the RSM analysis, it was possible to confirm the removal of SC for the entire experimental range. Major intermediates of SC degradation were identified and a degradation pathway was proposed. The kinetics of SC degradation was modeled as a pseudo-first-order reaction with a rate constant ranging between 0.072 and 1.250 min-1. The SC degradation and TOC removal were strongly enhanced by increasing the concentration of gaseous ozone at the inlet and incorporating UV radiation. The highest TOC removal reached at 60 min was 75%, in the O3/UV system, with initial SC content of 50 mg L-1 and inlet ozone concentration of 125 g Nm-3. The degradation rate of SC was increased 3 to 9 times in the presence of UV radiation. Ozone-based advanced oxidation processes appear as a suitable alternative for treatment of the emerging pollutant SC.
Collapse
Affiliation(s)
- Mariana Guadalupe Abrile
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Michela Ciucio
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - Lourdes Marlén Demarchi
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - Virginia Mariel Bono
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Laura Fiasconaro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Eugenia Lovato
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina.
| |
Collapse
|
11
|
Patidar R, Srivastava VC. Evaluation of the sono-assisted photolysis method for the mineralization of toxic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Fraiese A, Cesaro A, Belgiorno V, Sanromán MA, Pazos M, Naddeo V. Ultrasonic processes for the advanced remediation of contaminated sediments. ULTRASONICS SONOCHEMISTRY 2020; 67:105171. [PMID: 32446202 DOI: 10.1016/j.ultsonch.2020.105171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Sediments play a fundamental role in the aquatic environment, so that the presence of contaminants poses severe concern for the possible negative effects on both environmental and human health. Sediment remediation is thus necessary to reduce pollutant concentrations and several techniques have been studied so far. A novel approach for sediment remediation is the use of Advanced Oxidation Processes, which include ultrasound (US). This paper focuses on the study of the ultrasonic effects for the simultaneous reduction of both organic and inorganic contaminants from sediments. To this end, the US technology was investigated as a stand-alone treatment as well as in combination with an electro-kinetic (EK) process, known to be effective in the removal of heavy metals from soil and sediments. The US remediation resulted in higher organic compound degradation, with an average 88% removal, but promising desorption yields (47-84%) were achieved for heavy metals as well. The combined EK/US process was found to be particularly effective for lead. Experimental outcomes highlighted the potential of the ultrasonic technology for the remediation of contaminated sediments and addressed some considerations for the possible scale-up.
Collapse
Affiliation(s)
- A Fraiese
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy
| | - A Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125 Napoli, Italy
| | - V Belgiorno
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy
| | - M A Sanromán
- CINTEX - Universidade de Vigo, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - M Pazos
- CINTEX - Universidade de Vigo, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - V Naddeo
- Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 132 - 84084 Fisciano, SA, Italy.
| |
Collapse
|
13
|
Shojaeimehr T, Tasbihi M, Acharjya A, Thomas A, Schomäcker R, Schwarze M. Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Borea L, Naddeo V, Shalaby MS, Zarra T, Belgiorno V, Abdalla H, Shaban AM. Wastewater treatment by membrane ultrafiltration enhanced with ultrasound: Effect of membrane flux and ultrasonic frequency. ULTRASONICS 2018; 83:42-47. [PMID: 28662777 DOI: 10.1016/j.ultras.2017.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Membrane ultrafiltration is increasingly applied for wastewater treatment and reuse, even though membrane fouling still represents one of the main drawbacks of this technology. In the last years, innovative strategies for membrane fouling control have been developed, such as the combination of membrane processes with ultrasound (US). In present work, the application of membrane ultrafiltration and its combination with US were studied, evaluating the influence on the performance of the treatment and membrane fouling formation of two membrane fluxes, 75 and 150L/m2h, along with two US frequencies, 35 and 150kHz. The results observed showed that the combination of membrane ultrafiltration with US, respect to the filtration process alone, reduced membrane fouling rates to a greater extent at the higher membrane flux and lower US frequency applied, reaching a reduction of 57.33% at 150L/m2h and 35kHz. Furthermore, higher organic matter and turbidity removals were observed at higher frequency (130kHz). The results obtained highlights the applicability of this combined process for the upgrading of membrane ultrafiltration and as an alternative option to conventional tertiary wastewater treatments.
Collapse
Affiliation(s)
- Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Marwa S Shalaby
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El Bohouth Street (Former El Tahrir Street), P.O. Box 12622, Dokki, Giza, Egypt
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Heba Abdalla
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El Bohouth Street (Former El Tahrir Street), P.O. Box 12622, Dokki, Giza, Egypt
| | - Ahmed M Shaban
- Water Pollution Research Department, National Research Centre, 33 El Bohouth Street (Former El Tahrir Street), P.O. Box 12622, Dokki, Giza, Egypt
| |
Collapse
|
15
|
Chong S, Zhang G, Wei Z, Zhang N, Huang T, Liu Y. Sonocatalytic degradation of diclofenac with FeCeO x particles in water. ULTRASONICS SONOCHEMISTRY 2017; 34:418-425. [PMID: 27773264 DOI: 10.1016/j.ultsonch.2016.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
This paper studies the sonocatalytic degradation of diclofenac in water using FeCeOx-catalyzed ultrasound. The effects of pre-adsorption and gas addition were investigated. Nitrogen adsorption/desorption, SEM, XRD, Raman and XPS analyses of FeCeOx before and after sonication were characterized. The proposed mechanism was based on the microstructure changes of FeCeOx and reactive-species-scavenging performances. The results show that FeCeOx has excellent performance in catalyzing an ultrasonic system in water, and 80% of diclofenac was removed in 30min ([Diclofenac]=20mg/L, FeCeOx amount=0.5g/L, pH=6, ultrasonic density=3.0W/cm3, ultrasonic frequency=20kHz, temperature=298K). The Fe, Ce, and O elements remained highly dispersed in the structure of FeCeOx, and the solid solution structure of FeCeOx remained stable after the reaction. Ce (III) was gradually oxidized to Ce (IV) and Fe (III) was gradually reduced to Fe (II) after the reaction, which indicates that Fe and Ce ions with different valences coexisted in dynamic equilibrium. The amount of oxygen vacancies in FeCeOx significantly decreased after the reaction, which indicates that oxygen vacancy participated in the ultrasonic process. Singlet oxygen 1O2 was the primary reactive species in the degradation process, and the hydroxyl radicals OH and superoxide radical anion O2- also participated in the reaction. FeCeOx had excellent chemical stability with negligible leaching ions in the ultrasonic process.
Collapse
Affiliation(s)
- Shan Chong
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Zhongheng Wei
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ting Huang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Yucan Liu
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
16
|
Ajo P, Krzymyk E, Preis S, Kornev I, Kronberg L, Louhi-Kultanen M. Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant. ENVIRONMENTAL TECHNOLOGY 2016; 37:2072-2081. [PMID: 26758812 DOI: 10.1080/09593330.2016.1141236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.
Collapse
Affiliation(s)
- Petri Ajo
- a Thermal Unit Operations/Separation Technology , School of Engineering Science, Lappeenranta University of Technology , Lappeenranta , Finland
| | - Ewelina Krzymyk
- b Laboratory of Organic Chemistry , Åbo Akademi University , Turku , Finland
| | - Sergei Preis
- c School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Center , Panyu District, Guangzhou , Guangdong Province , People's Republic of China
| | - Iakov Kornev
- d Institute of Non-Destructive Testing, Tomsk Polytechnic University , Tomsk , Russia
| | - Leif Kronberg
- b Laboratory of Organic Chemistry , Åbo Akademi University , Turku , Finland
| | - Marjatta Louhi-Kultanen
- a Thermal Unit Operations/Separation Technology , School of Engineering Science, Lappeenranta University of Technology , Lappeenranta , Finland
| |
Collapse
|