1
|
Andreolli M, Villanova V, Zanzoni S, D'Onofrio M, Vallini G, Secchi N, Lampis S. Characterization of trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. SP1d and its potential for environmental applications. Microb Cell Fact 2023; 22:126. [PMID: 37443119 DOI: 10.1186/s12934-023-02128-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.
Collapse
Affiliation(s)
- Marco Andreolli
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Nicola Secchi
- Eurovix S.p.A, Viale Mattei 17, Entratico, Bergamo, 24060, Italy
| | - Silvia Lampis
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| |
Collapse
|
2
|
Dmitrieva ED, Grinevich VI, Gertsen MM. Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Thi Mo L, Irina P, Natalia S, Irina N, Lenar A, Andrey F, Ekaterina A, Sergey A, Olga P. Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms 2022; 10:microorganisms10081594. [PMID: 36014013 PMCID: PMC9416576 DOI: 10.3390/microorganisms10081594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to reveal the peculiarities of the adaptation of rhodococci to hydrophobic hydrocarbon degradation at low temperatures when the substrate was in solid states. The ability of actinobacteria Rhodococcus erythropolis (strains X5 and S67) to degrade hexadecane at 10 °C (solid hydrophobic substrate) and 26 °C (liquid hydrophobic substrate) is described. Despite the solid state of the hydrophobic substrate at 10 °C, bacteria demonstrate a high level of its degradation (30–40%) within 18 days. For the first time, we show that specialized cellular structures are formed during the degradation of solid hexadecane by Rhodococcus at low temperatures: intracellular multimembrane structures and surface vesicles connected to the cell by fibers. The formation of specialized cellular structures when Rhodococcus bacteria are grown on solid hexadecane is an important adaptive trait, thereby contributing to the enlargement of a contact area between membrane-bound enzymes and a hydrophobic substrate.
Collapse
Affiliation(s)
- Luong Thi Mo
- Department of Biotechnology, Tula State University, Prospekt Lenina 92, 300012 Tula, Russia
- Russian-Vietnamese Tropical Research and Technology Center (Southern Branch), No. 1–3, 3 Thang 2 (the 3rd of February) Street, 11th Ward, District 10, Ho Chi Minh City 740500, Vietnam
| | - Puntus Irina
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Suzina Natalia
- Laboratory of Microbial Cytology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Nechaeva Irina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Akhmetov Lenar
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Filonov Andrey
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Akatova Ekaterina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Alferov Sergey
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Ponamoreva Olga
- Department of Biotechnology, Tula State University, Prospekt Lenina 92, 300012 Tula, Russia
- Correspondence:
| |
Collapse
|
4
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
5
|
Delegan Y, Petrikov K, Frantsuzova E, Rudenko N, Solomentsev V, Suzina N, Travkin V, Solyanikova IP. Complete Genome Analysis of Rhodococcus opacus S8 Capable of Degrading Alkanes and Producing Biosurfactant Reveals Its Genetic Adaptation for Crude Oil Decomposition. Microorganisms 2022; 10:1172. [PMID: 35744693 PMCID: PMC9229178 DOI: 10.3390/microorganisms10061172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Microorganisms capable of decomposing hydrophobic substrates in cold climates are of considerable interest both in terms of studying adaptive reactions to low temperatures and in terms of their application in biotechnologies for cleaning up oil spills in a crude-oil polluted soil. The aim of this work was to investigate the genome of Rhodococcus opacus S8 and explore behavior traits of this strain grown in the presence of hexadecane. The genome size of strain S8 is 8.78 Mb, of which the chromosome size is 7.75 Mb. The S8 strain contains 2 circular plasmids of 135 kb and 105 kb and a linear plasmid with a size of 788 kb. The analysis of the genome revealed the presence of genes responsible for the degradation of alkanes and synthesis of biosurfactants. The peculiarities of morphology of microbial cells when interacting with a hydrophobic substrate were revealed. An adaptive mechanism responsible in the absence of oxygen for maintaining the process of degradation of hexadecane is discussed. The data obtained show that the strain S8 has great potential to be used in biotechnologies.
Collapse
Affiliation(s)
- Yanina Delegan
- Laboratory of Physiology of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Kirill Petrikov
- Laboratory of Plasmid Biology, Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia;
| | - Ekaterina Frantsuzova
- Laboratory of Physiology of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.)
- The Federal State Budget Educational Institution of Higher Education Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
| | - Natalia Rudenko
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia;
| | - Viktor Solomentsev
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Nataliya Suzina
- Laboratory of Cytology of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia;
| | - Vasili Travkin
- Regional Microbiological Center, Belgorod National Research University, 308015 Belgorod, Belgorod Region, Russia;
| | - Inna P. Solyanikova
- The Federal State Budget Educational Institution of Higher Education Pushchino State Institute of Natural Science, 142290 Pushchino, Moscow Region, Russia
- Regional Microbiological Center, Belgorod National Research University, 308015 Belgorod, Belgorod Region, Russia;
- Laboratory of Microbial Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
6
|
Rahlff J, Stolle C, Giebel HA, Mustaffa NIH, Wurl O, P R Herlemann D. Sea foams are ephemeral hotspots for distinctive bacterial communities contrasting sea-surface microlayer and underlying surface water. FEMS Microbiol Ecol 2021; 97:6149170. [PMID: 33625484 PMCID: PMC8012113 DOI: 10.1093/femsec/fiab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
The occurrence of foams at oceans’ surfaces is patchy and generally short-lived, but a detailed understanding of bacterial communities inhabiting sea foams is lacking. Here, we investigated how marine foams differ from the sea-surface microlayer (SML), a <1-mm-thick layer at the air–sea interface, and underlying water from 1 m depth. Samples of sea foams, SML and underlying water collected from the North Sea and Timor Sea indicated that foams were often characterized by a high abundance of small eukaryotic phototrophic and prokaryotic cells as well as a high concentration of surface-active substances (SAS). Amplicon sequencing of 16S rRNA (gene) revealed distinctive foam bacterial communities compared with SML and underlying water, with high abundance of Gammaproteobacteria. Typical SML dwellers such as Pseudoalteromonas and Vibrio were highly abundant, active foam inhabitants and thus might enhance foam formation and stability by producing SAS. Despite a clear difference in the overall bacterial community composition between foam and SML, the presence of SML bacteria in foams supports the previous assumption that foam is strongly influenced by the SML. We conclude that active and abundant bacteria from interfacial habitats potentially contribute to foam formation and stability, carbon cycling and air–sea exchange processes in the ocean.
Collapse
Affiliation(s)
- Janina Rahlff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Christian Stolle
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany.,Leibniz Institute for Baltic Sea Research (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Nur Ili Hamizah Mustaffa
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Oliver Wurl
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Daniel P R Herlemann
- Leibniz Institute for Baltic Sea Research (IOW), Seestraße 15, 18119 Rostock, Germany.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| |
Collapse
|
7
|
Alejandre-Colomo C, Harder J, Fuchs BM, Rosselló-Móra R, Amann R. High-throughput cultivation of heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. Syst Appl Microbiol 2020; 43:126066. [PMID: 32019686 DOI: 10.1016/j.syapm.2020.126066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 01/22/2023]
Abstract
On-going studies of phytoplankton-bacterioplankton interactions at the long-term ecological research site Helgoland Roads have indicated that many of the heterotrophic bacterial taxa have not yet been cultivated. A high-throughput approach combining whole cell matrix-assisted laser desorption ionization - time of flight mass spectroscopy with 16S rRNA gene sequencing was applied to the spring bloom of 2016. Aiming at an assessment of cultivability during a spring bloom, cultivation on solid marine media had to be used since dilution to extinction would not have been feasible for a high-throughput approach, as performed in this study. A total of 5023 isolates were obtained from nine weekly samples on eight different solid media between the early-bloom and post-bloom periods. Most of the 4136 strains identified affiliated with Bacteroidetes (13.3%), Gammaproteobacteria (26.9%), Alphaproteobacteria (40.6%) and Actinobacteria (6.7%). Of the 271 operational phylogenetic units (OPUs) identified, 13 are likely to represent novel genera and 143 novel species. A comparison with 16S rRNA gene tag data indicated that most of the isolates were rather rare in surface waters, with the exception of five OPUs affiliating with Rhodobacteraceae, Polaribacter, Psychromonas and Pseudoalteromonas. The effort yielded many novel isolates, yet most of the abundant heterotrophic bacteria still remained elusive. The large strain collection obtained will not only provide insights into the succession of the cultivable fraction of the bacterioplankton, but also enable fine-tuned taxonomic and physiological follow-up studies for improving our knowledge on heterotrophic bacteria in North Sea waters.
Collapse
Affiliation(s)
- Carlota Alejandre-Colomo
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles, Spain.
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| |
Collapse
|
8
|
Characterization of a biosurfactant-producing Leclercia sp. B45 with new transcriptional patterns of alkB gene. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1409-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Gontikaki E, Potts L, Anderson J, Witte U. Hydrocarbon-degrading bacteria in deep-water subarctic sediments (Faroe-Shetland Channel). J Appl Microbiol 2018; 125:1040-1053. [PMID: 29928773 PMCID: PMC6849767 DOI: 10.1111/jam.14030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
AIMS The aim of this study was the baseline description of oil-degrading sediment bacteria along a depth transect in the Faroe-Shetland Channel (FSC) and the identification of biomarker taxa for the detection of oil contamination in FSC sediments. METHODS AND RESULTS Oil-degrading sediment bacteria from 135, 500 and 1000 m were enriched in cultures with crude oil as the sole carbon source (at 12, 5 and 0°C respectively). The enriched communities were studied using culture-dependent and culture-independent (clone libraries) techniques. Isolated bacterial strains were tested for hydrocarbon degradation capability. Bacterial isolates included well-known oil-degrading taxa and several that are reported in that capacity for the first time (Sulfitobacter, Ahrensia, Belliella, Chryseobacterium). The orders Oceanospirillales and Alteromonadales dominated clone libraries in all stations but significant differences occurred at genus level particularly between the shallow and the deep, cold-water stations. Alcanivorax constituted 64% of clones at FSC135 but was absent at deeper stations. Pseudoalteromonas and Oleispira dominated the bacterial community at 500 and 1000 m. CONCLUSIONS The genus Oleispira emerged as a major player in the early stages of crude oil degradation in deep-sea sediments of the FSC particularly at subzero temperatures. This finding is offering a direction for future research into biomonitoring tools for the detection of low levels of crude oil contamination in the deep FSC, and possibly high latitude cold waters in general. SIGNIFICANCE AND IMPACT OF THE STUDY Oil and gas exploration in the FSC occurs at depths >1000 m but baseline environmental data necessary for the assessment of ecosystem recovery to prespill conditions in the event of an oil spill are lacking. This study will contribute to our ability to assess the impact of oil release in the FSC and guide the direction of bioremediation strategies tailored to the area.
Collapse
Affiliation(s)
- E. Gontikaki
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - L.D. Potts
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - J.A. Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of EngineeringUniversity of AberdeenAberdeenUK
| | - U. Witte
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
10
|
Tripathi L, Irorere VU, Marchant R, Banat IM. Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 2018; 40:1441-1457. [PMID: 30145666 PMCID: PMC6223728 DOI: 10.1007/s10529-018-2602-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Surfactants and emulsifiers are surface-active compounds (SACs) which play an important role in various industrial processes and products due to their interfacial properties. Many of the chemical surfactants in use today are produced from non-renewable petrochemical feedstocks, while biosurfactants (BS) produced by microorganisms from renewable feedstocks are considered viable alternatives to petroleum based surfactants, due to their biodegradability and eco-friendly nature. However, some well-characterised BS producers are pathogenic and therefore, not appropriate for scaled-up production. Marine-derived BS have been found to be produced by non-pathogenic organisms making them attractive possibilities for exploitation in commercial products. Additionally, BS produced from marine bacteria may show excellent activity at extreme conditions (temperature, pH and salinity). Despite being non-pathogenic, marine-derived BS have not been exploited commercially due to their low yields, insufficient structural elucidation and uncharacterised genes. Therefore, optimization of BS production conditions in marine bacteria, characterization of the compounds produced as well as the genes involved in the biosynthesis are necessary to improve cost-efficiency and realise the industrial demands of SACs.
Collapse
Affiliation(s)
- Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Victor U Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
11
|
Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J Microbiol Biotechnol 2018; 34:20. [DOI: 10.1007/s11274-017-2401-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
12
|
Krolicka A, Boccadoro C, Nilsen MM, Baussant T. Capturing Early Changes in the Marine Bacterial Community as a Result of Crude Oil Pollution in a Mesocosm Experiment. Microbes Environ 2017; 32:358-366. [PMID: 29187706 PMCID: PMC5745021 DOI: 10.1264/jsme2.me17082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of marine bacterial community succession from a short-term study of seawater incubations at 4°C to North Sea crude oil are presented herein. Oil was used alone (O) or in combination with a dispersant (OD). Marine bacterial communities resulting from these incubations were characterized by a fingerprinting analysis and pyrosequencing of the 16S rRNA gene with the aim of 1) revealing differences in bacterial communities between the control, O treatment, and OD treatment and 2) identifying the operational taxonomic units (OTUs) of early responders in order to define the bacterial gene markers of oil pollution for in situ monitoring. After an incubation for 1 d, the distribution of the individual ribotypes of bacterial communities in control and oil-treated (O and OD) tanks differed. Differences related to the structures of bacterial communities were observed at later stages of the incubation. Among the early responders identified (Pseudoalteromonas, Sulfitobacter, Vibrio, Pseudomonas, Glaciecola, Neptunomonas, Methylophaga, and Pseudofulvibacter), genera that utilize a disintegrated biomass or hydrocarbons as well as biosurfactant producers were detected. None of these genera included obligate hydrocarbonoclastic bacteria (OHCB). After an incubation for 1 d, the abundances of Glaciecola and Pseudofulvibacter were approximately 30-fold higher in the OD and O tanks than in the control tank. OTUs assigned to the Glaciecola genus were represented more in the OD tank, while those of Pseudofulvibacter were represented more in the O tank. We also found that 2 to 3% of the structural community shift originated from the bacterial community in the oil itself, with Polaribacter being a dominant bacterium.
Collapse
Affiliation(s)
- Adriana Krolicka
- International Research Institute of Stavanger (IRIS), Environment department
| | - Catherine Boccadoro
- International Research Institute of Stavanger (IRIS), Environment department
| | - Mari Mæland Nilsen
- International Research Institute of Stavanger (IRIS), Environment department
| | - Thierry Baussant
- International Research Institute of Stavanger (IRIS), Environment department
| |
Collapse
|