1
|
Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18750-18764. [PMID: 38349489 DOI: 10.1007/s11356-024-32372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.
Collapse
Affiliation(s)
- Najwa Najihah Mohamad Daud
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia.
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Col. Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| |
Collapse
|
2
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
3
|
Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. CHEMOSPHERE 2022; 286:131587. [PMID: 34303047 DOI: 10.1016/j.chemosphere.2021.131587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Adamya Patel
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shaurya Khanna
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Eleena Banerjee
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shubh Parekh
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - C Karthick
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - G Velvizhi
- CO(2) Research and Green Technology Center, Vellore Institute of Technology, Vellore, 632014, India
| | - K Nanthagopal
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Anandharaj SJ, Gunasekaran J, Udayakumar GP, Meganathan Y, Sivarajasekar N. Biobutanol: Insight, Production and Challenges. SPRINGER PROCEEDINGS IN ENERGY 2020. [DOI: 10.1007/978-981-15-4638-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|