1
|
Yamada K, Kitao Y, Asamoto H, Minamisawa H. Development of recoverable adsorbents for Cr(VI) ions by grafting of a dimethylamino group-containing monomer on polyethylene substrate and subsequent quaternization. ENVIRONMENTAL TECHNOLOGY 2023; 44:2025-2038. [PMID: 34919032 DOI: 10.1080/09593330.2021.2020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/30/2023]
Abstract
A polymeric adsorbent for removal of hexavalent chromium (Cr(VI)) ions was developed by the photografting of 2-(dimethylamino)ethyl methacrylate (DMAEMA) to a polyethylene (PE) mesh and subsequent quaternization with iodoalkanes of different alkyl chain lengths. The grafting of DMAEMA and subsequent quaternization were verified by the FT-IR and XPS measurements. The Cr(VI) ion adsorption capacity of the DMAEMA-grafted PE meshes had the maximum value at the grafted amount of 2.6 mmol/g in a 0.20 mM K2Cr2O7 solution at pH 3.0 and 30°C. The adsorption behaviour obeyed the pseudo-second order kinetic model and well expressed by Langmuir isotherm. These results suggest that the Cr(VI) ion adsorption occurs through the electrostatic interaction mainly between protonated dimethylamino groups and hydrochromate (HCrO4-) ions. The adsorption capacity of the quaternized PE-g-PDMAEMA meshes increased with an increase in the degree of quaternization and/or the alkyl chain length of the iodoalkanes used and the maximum adsorption ratio was obtained at the degree of quaternization of 54.2% for the iodoheptane-quaternized PE-g-PDMAEMA (PE-g-QC7PDMAEMA) mesh. This value was about 1.86 times higher than that of the PE-g-PDAMEMA mesh. Cr(VI) ions were successfully desorbed from the PE-g-PDMAEMA and PE-g-QC7PDMAEMA meshes in eluents such as NaOH, NaCl, and NH4Cl. In 0.50 M NaCl, 0.10 M NH4Cl, and 0.50 mM NaOH, the adsorption and desorption process was repeatedly performed without any considerable decrease and the desorption behaviour obeyed the pseudo-second order kinetic model. These results emphasise that the PE-g-PDMAEMA meshes and their quaternized products can be applied as an adsorbent for Cr(VI) ions.
Collapse
Affiliation(s)
- Kazunori Yamada
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Yoshinori Kitao
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiromichi Asamoto
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiroaki Minamisawa
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| |
Collapse
|
2
|
Nishino A, Taki A, Asamoto H, Minamisawa H, Yamada K. Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads. Polymers (Basel) 2022; 14:2104. [PMID: 35631986 PMCID: PMC9146620 DOI: 10.3390/polym14102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
The hexavalent chromium (Cr(VI)) ion adsorption properties were conferred to porous silica beads by introducing alkylamine chains through functionalization with an aminosilane coupling agent, [3-(2-aminoethylamino)propyl]triethoxysilane (AEAPTES), or with an epoxysilane coupling agent, (3-glycidyloxypropyl)triethoxysilane (GOPTES), and polyfunctional amine compounds or poly-ethylenimines (PEIs). The presence of amino groups on the silica beads was confirmed by XPS and the amount of amino groups increased to 0.270 mmol/g by increasing the AEAPTES concentration and/or reaction time. The adsorption capacity of the silica beads functionalized with AEAPTES was the maximum at the initial pH value of 3.0 and the initial adsorption rate increased with an increase in the temperature. The adsorption capacity increased with an increase in the amount of amino groups at pH 3.0 and 30 °C. The adsorption behavior obeyed the pseudo-second order kinetic model and was well expressed by the Langmuir isotherm. These results support that Cr(VI) ion adsorption is accomplished through the electrostatic interaction between protonated amino groups and HCrO4- ions. In addition, the adsorption capacity further increased to 0.192-0.320 mmol/g by treating the GOPTES-treated silica beads with triethylenetetramine, pentaethylenehexamine, or PEI. These empirical, equilibria, and kinetic aspects obtained in this study support that the porous silica-based adsorbents prepared in this study can be applied to the removal of Cr(VI) ions.
Collapse
Affiliation(s)
- Anzu Nishino
- Major of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan; (A.N.); (A.T.)
| | - Ayane Taki
- Major of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan; (A.N.); (A.T.)
| | - Hiromichi Asamoto
- Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan; (H.A.); (H.M.)
| | - Hiroaki Minamisawa
- Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan; (H.A.); (H.M.)
| | - Kazunori Yamada
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan
| |
Collapse
|
3
|
Kitao Y, Kimura Y, Asamoto H, Minamisawa H, Yamada K. Enhancement of Cr(VI) ion adsorption by two-step grafting of methacrylamide (MAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto polyethylene plate. ENVIRONMENTAL TECHNOLOGY 2022; 43:2033-2046. [PMID: 33315527 DOI: 10.1080/09593330.2020.1864481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Polyethylene (PE) plates grafted with a neutral hydrophilic monomer, methacrylamide (MAAm), and a cationic monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA), (PE-g-PMAAm)-g-PDMAEMA plates, were prepared by the two-step photografting. The Cr(VI) ion adsorption of the resultant (PE-g-PMAAm)-g-PDMAEMA plates was investigated as a function of the initial pH value, temperature, and grafted amounts of PMAAm and PDMAEMA. The adsorption capacity of the (PE-g-PMAAm)-g-PDMAEMA plates had the maximum at the initial pH value of 3.0 and the initial adsorption rate increased with the temperature and increased with the amount of grafted DMAEMA. This result suggests that protonated dimethylamino groups present in the inside of the grafted layer are increasingly involved in the Cr(VI) ion adsorption by the increase in the water absorptivity through the formation of the intermediate grafted layer of PMAAm. The maximum adsorption ratio of 0.510 was obtained for a (PE-g-PMAAm)-g-PDMAEMA plate with GMAAm = 30 μmol/cm2 and GDMAEMA = 1.7 μmol/cm2. The maximum adsorption capacity obtained in this study was comparable to or higher than those of other adsorbents for Cr(VI) ions. The adsorption behaviour obeyed the pseudo-second order kinetic model and was well described by the Langmuir isotherm model, suggesting that the adsorption of Cr(VI) ions occurs through the electrostatic interaction between protonated dimethylamino groups and HCrO4- ions. Cr(VI) ions were successfully desorbed in such eluents as NaCl, NaCl containing NaOH, NH4Cl, NH4Cl containing NaOH, and NaOH and (PE-g-PMAAm)-g-PDMAEMA plates were repeatedly used without considerable loss in the adsorption capacity.
Collapse
Affiliation(s)
- Yoshinori Kitao
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Yuji Kimura
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiromichi Asamoto
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiroaki Minamisawa
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Kazunori Yamada
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| |
Collapse
|
4
|
Yamada K, Takada A, Konishi A, Kimura Y, Asamoto H, Minamisawa H. Hexavalent Cr ion adsorption and desorption behaviour of expanded poly(tetrafluoro)ethylene films grafted with 2-(dimethylamino)ethyl methacrylate. ENVIRONMENTAL TECHNOLOGY 2021; 42:1885-1898. [PMID: 31631793 DOI: 10.1080/09593330.2019.1683612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
A new polymeric adsorbent for Cr(VI) ions based on an expanded poly(tetrafluoroethylene) (ePTFE) film was prepared by the combined use of the pretreatment with oxygen plasma and photografting of 2-(dimethylamino)ethyl methacrylate (DMAEMA). The grafting of DMAEMA was characterized by XPS and FT-IR spectroscopic measurements. The adsorption behaviour of DMAEMA-grafted ePTFE (ePTFE-g-PDMAEMA) films was investigated as a function of the experimental parameters, such as the initial pH value, temperature, and grafted amount. The adsorption capacity and initial adsorption rate had the maximum values at the initial pH value of 3.0. On the other hand, the adsorption capacity became almost constant at temperatures higher than 30°C, although the adsorption rate increased over the temperature. The adsorption behaviour obeyed the pseudo-second-order kinetic model and well expressed by the Langmuir isotherm equation with higher correlation coefficients. These results indicate that the adsorption of Cr(VI) ions occurs through the electrostatic interaction between protonated dimethylamino groups on a grafted PDMAEMA chain and HCrO4- ions. Cr(VI) ions were successfully desorbed from Cr(VI)-loaded ePTFE-g-PDMAEMA films in the eluents, such as NaCl at 0.50 M, NH4Cl at 0.50M, and NaOH at 1.0 mM, and ePTFE-g-PDMAEMA films were repeatedly used for adsorption of Cr(VI) ions without appreciable loss in the adsorption capacity. It should be noted that Cr(VI) ion adsorptivity with a high initial rate was conferred to the ePTFE films. The results obtained in this study emphasize that ePTFE-g-PDMAEMA films can be applied as an adsorbent for Cr(VI) ions.
Collapse
Affiliation(s)
- Kazunori Yamada
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Asumi Takada
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Ayako Konishi
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Yuji Kimura
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiromichi Asamoto
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| | - Hiroaki Minamisawa
- Department of Basic Science, College of Industrial Technology, Nihon University, Narashino, Japan
| |
Collapse
|
5
|
Lin HT, Venault A, Chang Y. Reducing the pathogenicity of wastewater with killer vapor-induced phase separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, chitosan beads modified with sodium dodecyl sulfate (SDS) were successfully synthesized and employed for the removal of chromium(VI) (Cr(VI)). The adsorption performance of the adsorbent (SDS-chitosan beads) was examined by batch experiments. The partition coefficient (PC) as well as the adsorption capacity were evaluated to assess the true performance of the adsorbent in this work. The adsorbent (SDS-chitosan beads) showed a maximum Cr(VI) adsorption capacity of 3.23 mg·g−1 and PC of 9.5 mg·g−1·mM−1 for Cr(VI). The prepared adsorbent was characterized by different techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FT-IR). We used inductively coupled plasma mass spectrometry (ICP-MS) for the determination of Cr(VI) in solution. The experimental data could be well-fitted by pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic studies indicated that the adsorption process was favorable under the higher temperature condition. The SDS-modified chitosan beads synthesized in this work represent a promising adsorbent for removing Cr(VI).
Collapse
|
7
|
Han S, Zang Y, Gao Y, Yue Q, Zhang P, Kong W, Jin B, Xu X, Gao B. Co-monomer polymer anion exchange resin for removing Cr(VI) contaminants: Adsorption kinetics, mechanism and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136002. [PMID: 31905586 DOI: 10.1016/j.scitotenv.2019.136002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Modified anion exchange resin (EDE-D301) was synthesized by mixing monomers: epichlorohydrin (ECH), dimethylamine (DMA), ethylenediamine (EDA) with the weakly alkaline anion exchange resin D301 through in-situ polymerization method. Adsorption performance of EDE-D301 for removing Cr(VI) contaminants was investigated in batch and column systems. Physicochemical properties of the anion exchange resins were characterized to determine the adsorption mechanism and regeneration ability. Characteristic results revealed that EDE-D301 showed enhanced surface area, positive charge and contents of N and Cl elements, indicating that the modifying reagents of monomers were successfully polymerized in the resin. The experimental adsorption data fitted well to the pseudo-second-order kinetic model and the Langmuir isotherm model. The fixed-bed experiments showed that the exhaustion time increased with increasing the bed depth, and decreased with increasing the flowrate and influent concentration. Adsorption capacity for Cr(VI) onto EDE-D301 was determined at a maximum level of 298 mg·g-1, and remained at 93% after four consecutive cycles. FTIR and XPS analysis indicated that the ion exchange and complexation were responsible for the Cr(VI) adsorption.
Collapse
Affiliation(s)
- Songlin Han
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanan Zang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ping Zhang
- Shandong Urban Construction Vocational College, Jinan 250103, China
| | - Wenjia Kong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005,Australia
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
|
9
|
Li X, Feng Q, Li D, Christopher N, Ke H, Wei Q. Reusable Surface-Modified Bacterial Cellulose Based on Atom Transfer Radical Polymerization Technology with Excellent Catalytic Properties. NANOMATERIALS 2019; 9:nano9101443. [PMID: 31614531 PMCID: PMC6835580 DOI: 10.3390/nano9101443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022]
Abstract
The high catalytic activity of membrane-binding gold nanoparticles (AuNPs) makes its application in oxidation or reduction an attractive challenge. Herein, surface-functionalized bacterial cellulose (BC-poly(HEMA)) was successfully prepared with 2-hydroxyethyl methacrylate (HEMA) as monomers via the atom transfer radical polymerization (ATRP) method. BC-poly(HEMA) was further utilized as not only reducing agent but also carrier for uniform distribution of the AuNPs in the diameter of about 8 nm on the membrane surface during the synthesis stage. The synthesized AuNPs/BC-poly(HEMA) exhibited excellent catalytic activity and reusability for reducing 4-nitrophenol (4-NP) from NaBH4. The results proved that the catalytic performance of AuNPs/BC-poly(HEMA) was affected by the surrounding temperature and pH, and AuNPs/BC-poly(HEMA) maintained the extremely high catalytic activity of AuNPs/BC-poly(HEMA) even after 10 reuses. In addition, no 4-NP was detected in the degradation solution after being stored for 45 days. The reusable catalyst prepared by this work shows a potential industrial application prospect.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Quan Feng
- Key Laboratory of Textile Fabric, Anhui Polytechnic University, Wuhu 241000, China.
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Narh Christopher
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Fujian Key Laboratory of Novel Functional Textile Fiber and Materials, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|