1
|
Zhu R, Wang B, Zhong X, Wang L, Zhang Q, Xie H, Shen Y, Feng Y. Biochar and pyroligneous acid contributed to the sustainable reduction of ammonia emissions: From compost process to soil application. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137677. [PMID: 39986101 DOI: 10.1016/j.jhazmat.2025.137677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aerobic composting is vital for resource recycling but struggles with high ammonia (NH3) emissions. Biochar (BC) and pyroligneous acid (PA), products of waste pyrolysis, have great potential for reducing NH3 emissions. However, the effective utilization of BC and PA to reduce NH3 emissions in both compost process and product application remains unclear. In this study, different amounts of BC and PA were incorporated into the composting process. The evaluation indexes of compost products were systematically assessed and compared through the cultivation of amaranth. Results demonstrated that rational use of BC and PA could enhance compost quality and effectively reduce NH3 emissions. The addition of 15 %BC+ 3 %PA resulted in a 92.31 % increase in NH4+-N content while reducing NH3 emission by 39.94 % during composting. The synergistic effect achieved by maintaining NH4+-N, enhancing NO3--N, and regulating pH. The compost products in 15 %BC+ 3 %PA complied with the requirements of China's National organic fertilizer standard. Moreover, these compost products demonstrated soil sustained fertility effects, reducing NH3 emission by 41.05 %-69.66 % and increasing total weight of amaranth by 4.62 % by a dosage of 4 %. This study is highly significant for addressing the issue of NH3 emission in both the compost process and soil application.
Collapse
Affiliation(s)
- Rixing Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xudong Zhong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lisha Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qiuyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
2
|
Li H, Lin L, Peng Y, Hao Y, Li Z, Li J, Yu M, Li X, Lu Y, Gu W, Zhang B. Biochar's dual role in greenhouse gas emissions: Nitrogen fertilization dependency and mitigation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170293. [PMID: 38286282 DOI: 10.1016/j.scitotenv.2024.170293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Biochar was popularly used for reducing greenhouse gas (GHG) emissions in vegetable production, but using biochar does not necessarily guarantee a reduction in GHG emissions. Herein, it's meaningful to elucidate the intricate interplay among biochar properties, soil characteristics, and GHG emissions in vegetable production to provide valuable insights for informed and effective mitigation strategies. Therefore, in current research, a meta-analysis of 43 publications was employed to address these issues. The boost-regression analysis results indicated that the performance of biochar in inhibiting N2O emissions was most affected by the N application rate both in high and low N application conditions. Besides, biochar had dual roles and showed well performance in reducing GHG emissions under low N input (≤300 kg N ha-1), while having the opposite effect during high N input (>300 kg N ha-1). Specifically, applying biochar under low N fertilization input could obviously reduce soil N2O emissions, CO2 emissions, and CH4 emissions by 18.7 %, 17.9 %, and 16.9 %, respectively. However, the biochar application under high N fertilization input significantly (P < 0.05) increased soil N2O emissions, CO2 emissions, and CH4 emissions by 39.7 %, 43.0 %, and 27.7 %, respectively. Except for the N application rate, the soil pH, SOC, biochar C/N ratio, biochar pH, and biochar pyrolysis temperature are also the key factors affecting the control of GHG emissions in biochar-amended soils. The findings of this study will contribute to deeper insights into the potential application of biochar in regulating GHG under consideration of N input, offering scientific evidence and guidance for sustainable agriculture management.
Collapse
Affiliation(s)
- Hongzhao Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Liwen Lin
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yongzhou Hao
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Zhen Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Min Yu
- Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Xuewen Li
- Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Wang J, Wang B, Bian R, He W, Liu Y, Shen G, Xie H, Feng Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. ENVIRONMENTAL RESEARCH 2024; 243:117853. [PMID: 38070856 DOI: 10.1016/j.envres.2023.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.
Collapse
Affiliation(s)
- Jixiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangcai Shen
- Baoshan Branch of Yunnan Tobacco Company, Baoshan, 67800, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
4
|
Zhang T, Bai Y, Zhou X, Li Z, Cheng Z, Hong J. Towards sustainability: An integrated life cycle environmental-economic insight into cow manure management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:256-266. [PMID: 37925928 DOI: 10.1016/j.wasman.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Waste management signifies an equilibrium between environmental and economic factors. However, a comprehensive understanding of the integrated life cycle environmental-economic performance of waste management activities remains unclear. To facilitate a systematic linkage between the economic and environmental sectors, a regionalized life cycle assessment-based life cycle costing method was developed based on China's actual status quo. The cow manure utilization was set as an entry point to explored long-term environmental-economic performance of milk production under various manure utilization pathways. The results show that trade-offs were observed between internal and external costs as well as various environmental indicators. The choice of waste utilization is the focal point of environmental-economic trade-offs in the cow raising system. The optimal environmental-economic performance was achieved through the manure fertilizer utilization pathway, yielding a remarkable three-fold increase in marginal environmental benefits. Compared with fertilizer utilization, the manure direct returning to field reduced the carbon footprint by 12% while induced an external cost of $14.3. The wastewater treatment pathway is $ 5.5 lower in internal costs but $ 11.7 higher in external costs than those of fertilizer utilization. Overall, utilizing manure has potential to mitigate the upward trend of carbon footprint and external costs. However, achieving the carbon peak remains a significant challenge. A promising solution is the recycling of straw resources within cropping systems, particularly in hotspot regions (e.g., Inner Mongolia, Heilongjiang, Hebei, and Shandong). A comprehensive analysis of the dynamic interplay between cropping systems and cow raising systems is critical steps towards realizing a carbon-neutral future within the dairy production.
Collapse
Affiliation(s)
- Tianzuo Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yueyang Bai
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Xinying Zhou
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ziheng Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ziyue Cheng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jinglan Hong
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Baptista F, Almeida M, Paié-Ribeiro J, Barros AN, Rodrigues M. Unlocking the Potential of Spent Mushroom Substrate (SMS) for Enhanced Agricultural Sustainability: From Environmental Benefits to Poultry Nutrition. Life (Basel) 2023; 13:1948. [PMID: 37895329 PMCID: PMC10608327 DOI: 10.3390/life13101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
In this comprehensive review, we delve into the myriad applications of spent mushroom substrate (SMS) in agricultural contexts, with a particular emphasis on its role in fostering sustainable poultry production. Our examination spans three key domains: the use of SMS in fertilizers, its impact on environmental factors and gas emissions, and its contribution to poultry nutrition. This review synthesizes findings from multiple studies that underscore the potential of composted SMS as a viable alternative to conventional inorganic fertilizers, effectively meeting crop nutrient needs while mitigating groundwater contamination risks. Moreover, we highlight the substantial environmental advantages associated with the utilization of SMS and poultry waste, including reductions in greenhouse gas emissions and the promotion of sustainable waste management practices. Additionally, we explore the promising outcomes of integrating SMS into animal feed formulations, which have demonstrated significant enhancements in livestock growth performance and overall health. In sum, this review underscores the versatility and untapped potential of SMS as a valuable agricultural resource, with a particular focus on its role in advancing sustainable practices, optimizing nutrient management, and harnessing the value of organic waste materials, especially in the context of poultry production.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| | - Mariana Almeida
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (M.A.); (J.P.-R.)
| | - Jéssica Paié-Ribeiro
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (M.A.); (J.P.-R.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| | - Miguel Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (A.N.B.); (M.R.)
| |
Collapse
|
6
|
Sun N, Fan B, Yang F, Zhao L, Wang M. Effects of adding corn steep liquor on bacterial community composition and carbon and nitrogen transformation during spent mushroom substrate composting. BMC Microbiol 2023; 23:156. [PMID: 37237262 DOI: 10.1186/s12866-023-02894-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Carbon and nitrogen are essential energy and nutrient substances in the composting process. Corn steep liquor (CSL) is rich in soluble carbon and nitrogen nutrients and active substances and is widely used in the biological industry. Nonetheless, limited research has been done on the effect of CSL on composting. This work firstly reveals the effect of adding CSL to bacterial community composition and carbon and nitrogen conversion during composting. This study provides the choice of auxiliary materials for the spent mushroom substrate compost (SMS) and some novel knowledge about the effect of bacterial community on C and N cycling during composting of SMS and CSL. Two treatments were set up in the experiment: 100% spent mushroom substrate (SMS) as CK and SMS + 0.5% CSL (v/v) as CP. RESULTS The results showed that the addition of CSL enhanced the initial carbon and nitrogen content of the compost, altered the bacterial community structure, and increased the bacterial diversity and relative abundance, which might be beneficial to the conversion and retention of carbon and nitrogen in the composting process. In this paper, network analysis was used to screen the core bacteria involved in carbon and nitrogen conversion. In the CP network, the core bacteria were divided into two categories, synthesizing and degrading bacteria, and there were more synthesizing bacteria than degrading bacteria, so the degradation and synthesis of organic matter were carried out simultaneously, while only degrading bacteria were found in the CK network. Functional prediction by Faprotax identified 53 groups of functional bacteria, among which 20 (76.68% abundance) and 14 (13.15% abundance) groups of functional bacteria were related to carbon and nitrogen conversion, respectively. Adding CSL stimulated the compensatory effect of core and functional bacteria, enhanced the carbon and nitrogen transformation ability, stimulated the activity of low-abundance bacteria, and reduced the competitive relationship between the bacterial groups. This may be why the addition of CSL accelerated the organic matter degradation and increased carbon and nitrogen preservation. CONCLUSIONS These findings indicate that the addition of CSL promoted the cycling and preservation of carbon and nitrogen in the SMS composts, and the addition of CSL to the compost may be an effective way to dispose of agricultural waste.
Collapse
Affiliation(s)
- Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
7
|
Wang F, Fang Y, Wang L, Xiang H, Chen G, Chang X, Liu D, He X, Zhong R. Effects of residual monensin in livestock manure on nitrogen transformation and microbial community during "crop straw feeding-substrate fermentation-mushroom cultivation" recycling system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:333-344. [PMID: 35780758 DOI: 10.1016/j.wasman.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Although crop-livestock integration recycling systems improve nitrogen (N) utilization in agroecosystems, there are limited studies regarding impacts of residual antibiotics in livestock manure on N transformation in entire recycling system. The objective was to evaluate effects of feeding monensin on N recycling during "straw feeding-substrate fermentation-mushroom cultivation". This experiment contained 3 steps. During straw feeding, beef cattle were allocated into 2 groups and fed diets with or without monensin, respectively. During fermentation, beef cattle manure (with or without monensin) and straw (corn or wheat) and were co-fermented for 35 d to produce substrates. During cultivation, Agaricus bisporus was cultivated on 4 substrates to recycle N in the form of mushrooms. Rates of N retention during fermentation were significant higher for monensin and corn straw treatments and there was an significant interaction between straw and antibiotic on N retention rate during cultivation. However, residual monensin significantly reduced amount of recycled N during entire recycling system, due to changes in N transformation-associated enzyme activity, ammonification and denitrification plus microbial community structure and succession. Specifically, residual monensin inhibited growth of dominant bacterial phylum Bacteroidetes and fungal phylum Neocallimastigomycota, and increased bacterial phylla Actinobacteriota and Firmicutes. These alterations in functional microbes increased N retention rates but reduced mushroom yields in antibiotic treatments during cultivation. In conclusion, monensin decreased the N recycling rate in recycling system, but also reduced N losses during fermentation by inhibiting ammonification and denitrification, so, avoiding antibiotics usage is an effective strategy to improve the efficiency of recycling systems.
Collapse
Affiliation(s)
- Fei Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Lixia Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Guoshuang Chen
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Xiao Chang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China.
| |
Collapse
|
8
|
Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives. SUSTAINABILITY 2022. [DOI: 10.3390/su14094976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As an environmental management method, the (life cycle assessment) LCA method can be used to compare the differences between various waste treatment processes in order to provide an environmentally friendly and economically feasible method for waste management. This study focused on the reutilization of typical organic waste to produce organic fertilizer in southwest China and used the life cycle assessment method to evaluate three aerobic chicken manure composting scenarios modified with three additives (biochar, mushroom bran, and tobacco residue) from an environmental and economic perspective. The results show that the total environmental loads of the optimized treatments using mushroom bran and biochar mixed with mushroom bran as additives were reduced by 30.0% and 35.1%, respectively, compared to the control treatment (viz. chicken manure composted with tobacco residue). Compared to the control treatment, the optimized composting treatment modified by mushroom bran with and without biochar improved the profit by 23.9% and 35.4%, respectively. This work reflected that the combined composting mode of chicken manure, tobacco residue, mushroom bran, and biochar is an environmentally friendly and economically feasible composting process, which is more suitable for the resource utilization of the typical organic waste in southwest China.
Collapse
|
9
|
Evaluation of Maturity and Greenhouse Gas Emission in Co-Composting of Chicken Manure with Tobacco Powder and Vinasse/Mushroom Bran. Processes (Basel) 2021. [DOI: 10.3390/pr9122105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of different proportions (0%, 5%, 10%, 15%) of bulking agent (vinasse, mushroom bran, and tobacco powder) on maturity and gaseous emissions in chicken manure composting. The results showed that all of the treatments reached the standard of harmless disposal. With the exception of the control treatment, the CH4, N2O, and NH3 emissions in the treatments that had been prepared using the addition of mixed bulking agents were effectively reduced by 2.9–30.6%, 8.30–80.9%, and 37.3–26.6%; their compost maturity also met the Chinese national standard. Specifically, 10% mushroom bran combined with 5% tobacco powder was the optimal combination for simultaneously improving the maturity and reducing greenhouse gas emission in chicken manure composting.
Collapse
|