1
|
Bu J, Wang Y, Gao Y, Zhao Q, Luo Y, Tiong YW, Lam HT, Zhang J, He Y, Wang CH, Tong YW. Enhancing anaerobic digestion of food waste with chemically vapor-deposited biochar: Effective enrichment of Methanosarcina and hydrogenotrophic methanogens. BIORESOURCE TECHNOLOGY 2025; 424:132225. [PMID: 39993661 DOI: 10.1016/j.biortech.2025.132225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The effects and mechanisms of chemically vapor-deposited (CVD) biochar on anaerobic digestion (AD) remain unexplored. This study proposes a novel approach to simultaneously address plastic waste management and bioenergy production by applying CVD biochar in the anaerobic digestion of food waste. Results indicate that CVD biochar, particularly PE900, significantly reduces the lag phase (from 15 to 9 days) and increases methane yield by 46 % compared to the control. The effectiveness of polyethylene-derived biochar is further confirmed through three consecutive fermentation batches, where it consistently improves methane production. CVD biochar also alters extracellular polymeric substance (EPS) composition and enriches key microbial communities, including hydrogenotrophic methanogens and Methanosarcina. The nanofiber structure and higher sp2-hybridized carbon content of PE900 biochar are likely the main factors influencing EPS, microbial composition, and methane production performance. This study demonstrates the potential of CVD biochar for enhancing anaerobic digestion and valorizing plastic waste in waste-to-energy conversion.
Collapse
Affiliation(s)
- Jie Bu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yiying Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yuhan Gao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Qianzhu Zhao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Yuhao Luo
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Yong Wei Tiong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Heng Thong Lam
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
2
|
Ribeiro AR, Devens KU, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Harnessing the Energy Potential and Value-Added Products from the Treatment of Sugarcane Vinasse: Maximizing Methane Production Through Co-Digestion with Sugarcane Molasses and Enhanced Organic Loading. Appl Biochem Biotechnol 2025; 197:964-988. [PMID: 39340631 DOI: 10.1007/s12010-024-05078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study assessed the impact of organic loading rate (OLR) on methane (CH4) production in the anaerobic co-digestion (AcoD) of sugarcane vinasse and molasses (SVM) (1:1 ratio) within a thermophilic fluidized bed reactor (AFBR). The OLR ranged from 5 to 27.5 kg COD.m-3.d-1, with a fixed hydraulic retention time (HRT) of 24 h. Organic matter removal varied from 56 to 84%, peaking at an OLR of 5 kg COD.m-3.d-1. Maximum CH4 yield (MY) (272.6 mL CH4.g-1CODrem) occurred at an OLR of 7.5 kg COD.m-3.d-1, while the highest CH4 production rate (MPR) (4.0 L CH4.L-1.d-1) and energy potential (E.P.) (250.5 kJ.d-1) were observed at an OLR of 20 kg COD.m-3.d-1. The AFBR exhibited stability across all OLR. At 22.5 kg COD.m-3.d-1, a decrease in MY indicated methanogenesis imbalance and inhibitory organic compound accumulation. OLR influenced microbial populations, with Firmicutes and Thermotogota constituting 43.9% at 7.5 kg COD.m-3.d-1, and Firmicutes dominating (52.7%) at 27.5 kg COD.m-3.d-1. Methanosarcina (38.9%) and hydrogenotrophic Methanothermobacter (37.6%) were the prevalent archaea at 7.5 kg COD.m-3.d-1 and 27.5 kg COD.m-3.d-1, respectively. Therefore, this study demonstrates that the organic loading rate significantly influences the efficiency of methane production and the stability of microbial communities during the anaerobic co-digestion of sugarcane vinasse and molasses, indicating that optimized conditions can maximize energy yield and maintain methanogenic balance.
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Kauanna Uyara Devens
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Franciele Pereira Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, CEP 13565-905, SP, Brazil.
| |
Collapse
|
3
|
Ribeiro AR, Devens KU, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance? Biodegradation 2024; 36:3. [PMID: 39470853 DOI: 10.1007/s10532-024-10097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The study evaluated the performance of thermophilic co-digestion in both single-stage methanogenic reactors (TMR) and two-stage systems, consisting of a thermophilic acidogenic reactor and a thermophilic sequential methanogenic reactor (TSMR). A 1:1 mixture of sugarcane vinasse and molasses was codigested in anaerobic fluidized bed reactors, with varying organic matter concentrations based on chemical oxygen demand (COD) ranging from 5 to 22.5 g COD L-1. Both systems achieved high organic matter removal efficiency (51 to 86.5%) and similar methane (CH4) yields (> 148 mL CH4 g-1CODremoved). However, at the highest substrate concentration (22.5 g COD L-1), the TSMR outperformed the TMR in terms of energy generation potential (205.6 kJ d-1 vs. 125 kJ d-1). Phase separation in the two-stage system increased bioenergy generation by up to 43.5% at lower substrate concentrations (7.5 g COD L-1), with hydrogen (H2) generation playing a critical role in this enhancement. Additionally, the two-stage system produced value-added products, including ethanol (2.3 g L-1), volatile organic acids (3.2 g lactate L-1), and H2 (0.6-2.7 L H2 L-1 d-1). Microbial analysis revealed that Thermoanaerobacterium, Caldanaerobius, and Clostridium were dominant at 5 g COD L-1, while Lactobacillus prevailed at concentrations of ≥ 15 g COD L-1. The primary methane producers in the single-stage system were Methanosarcina, Methanoculleus, and Methanobacterium, whereas Methanothermobacter, Bathyarchaeia, and Methanosarcina dominated in the two-stage system.
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Kauanna Uyara Devens
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Franciele Pereira Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Gil-Garcia C, Fuess LT, do Vale Borges A, Damianovic MHRZ. Phase separation as a strategy to prevent sulfide-related drawbacks in methanogenesis: performance and energetic aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31213-31223. [PMID: 38625470 DOI: 10.1007/s11356-024-33277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.
Collapse
Affiliation(s)
- Carolina Gil-Garcia
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil.
| | - André do Vale Borges
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil
| | | |
Collapse
|
5
|
Almeida PDS, de Menezes CA, Camargo FP, Sakamoto IK, Lovato G, Rodrigues JAD, Varesche MBA, Silva EL. Biomethane recovery through co-digestion of cheese whey and glycerol in a two-stage anaerobic fluidized bed reactor: Effect of temperature and organic loading rate on methanogenesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117117. [PMID: 36584460 DOI: 10.1016/j.jenvman.2022.117117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).
Collapse
Affiliation(s)
- Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil
| | - Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano Do Sul, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, Zip Code 13.563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, Zip Code 13.565-905, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
de Menezes CA, de Souza Almeida P, Camargo FP, Delforno TP, de Oliveira VM, Sakamoto IK, Varesche MBA, Silva EL. Two problems in one shot: Vinasse and glycerol co-digestion in a thermophilic high-rate reactor to improve process stability even at high sulfate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160823. [PMID: 36521617 DOI: 10.1016/j.scitotenv.2022.160823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic co-digestion (AcoD) of sugarcane vinasse and glycerol can be profitable because of the destination of two biofuel wastes produced in large quantities in Brazil (ethanol and biodiesel, respectively) and the complementary properties of these substrates. Thus, the objective of this study was to assess the effect of increasing the organic loading rate (OLR) from 2 to 20 kg COD m-3 d-1 on the AcoD of vinasse and glycerol (50 %:50 % on a COD basis) in a thermophilic (55 °C) anaerobic fluidized bed reactor (AFBR). The highest methane production rate was observed at 20 kg COD m-3 d-1 (8.83 L CH4 d-1 L-1), while the methane yield remained stable at around 265 NmL CH4 g-1 CODrem in all conditions, even when influent vinasse reached 1811 mg SO42- L-1 (10 kg COD m-3 d-1). Sulfate was not detected in the effluent. Bacterial genera related to sulfate removal, such as Desulfovibrio and Desulfomicrobium, were observed by means of shotgun metagenomic sequencing at 10 kg COD m-3 d-1, as well as the acetoclastic archaea Methanosaeta and prevalence of genes encoding enzymes related to acetoclastic methanogenesis. It was concluded that process efficiency and methane production occurred even in higher sulfate concentrations due to glycerol addition.
Collapse
Affiliation(s)
- Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Tiago Palladino Delforno
- SENAI Innovation Institute for Biotechnology, Rua Anhaia, 1321, Bom Retiro - São Paulo, 01130-000, São Paulo, SP, Brazil
| | - Valeria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), State University of Campinas, Campinas, SP CEP 13081-970, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|