1
|
Kang Y, Guo Z. Connecting urban green and blue spaces with children' health: a bibliometric analysis in CiteSpace and VOSviewer. Front Psychol 2025; 16:1560467. [PMID: 40417027 PMCID: PMC12098554 DOI: 10.3389/fpsyg.2025.1560467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Rapid urbanization has increasingly restricted children's access to natural environments, raising concerns about potential consequences for their physical, mental, and social well-being. Urban green and blue spaces are known to offer significant health benefits, including physical activity promotion, psychological restoration, and social development. Methods This study conducted a comprehensive bibliometric analysis to examine the relationship between urban green/blue spaces and children's health. A total of 575 relevant publications from 1981 to 2024 were retrieved from the Web of Science database. CiteSpace and VOSviewer were used for keyword co-occurrence analysis, co-citation mapping, and burst detection to visualize research trends and thematic evolution. Results Three major research phases were identified: (1) early focus on physical health outcomes, (2) a shift toward urban environmental contexts, and (3) emerging emphasis on sustainability, environmental quality, and walkability. While green spaces have been extensively studied, blue spaces remain underrepresented, especially in terms of their synergistic benefits when combined with green spaces. Key research themes include mental and physical health impacts, social skills development, and the educational functions of nature exposure. Discussion This study reveals the interdisciplinary and collaborative nature of current research and emphasizes the importance of ensuring equitable access to high-quality natural environments in urban areas. The findings offer practical implications for urban planners and policymakers and establish a research foundation for promoting sustainable urban development that supports children's health and well-being.
Collapse
Affiliation(s)
- Yutong Kang
- Xi'an Innovation College of Yan'an University, Xi'an, China
| | - Zhengbing Guo
- School of Public Policy and Administration, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Magdaleno-Magniales U, Salas-Espinoza EA, Saldaña-Villanueva K, Núñez-Mojica G, García-Díaz JM, Gaspar-Ramírez O. Determination of highly hazardous pesticides in fruits and vegetables in the Maya region of southeast of Mexico. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025; 60:103-110. [PMID: 39856799 DOI: 10.1080/03601234.2025.2457262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Highly Hazardous Pesticides (HHPs) have been identified as substances with severe adverse effects, including carcinogenicity, endocrine disruption, and reproductive toxicity. The aim of this study was to evaluate pesticide residues in fruits and vegetables from Hopelchén to provide evidence for policy recommendations on pesticide regulation. A total of 25 samples were collected and analyzed using the QuEChERS method with GC-MS/MS and LC-MS techniques. Of the 156 pesticides screened, 25 were detected, with tebuconazole, chlorantraniliprole, imidacloprid and carbendazim among the most frequent. Approximately 20% of the pesticides identified qualified as HHPs based on WHO/FAO criteria, while 60% were categorized as HHPs according to the more comprehensive criteria outlined by Pesticide Action Network International. Many of these pesticides exhibited toxicity to bees and high environmental persistence. Furthermore, 33% of the samples exceeded the European Union's Maximum Residue Limits, particularly for pesticides in papayas and bell peppers. Our findings show the presence of HHPs in the region, which represent critical hazards to ecosystem, pollinator populations, and public health. This work may contribute to the development of specific HHPs classification criteria for Mexico, thus advancing the transition toward safer, with special emphasis on vulnerable regions such as the Mayan zone in southeastern Mexico.
Collapse
Affiliation(s)
- U Magdaleno-Magniales
- Departamento de Recursos Naturales y Energía, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo (Cinvestav), Mexico
| | - E A Salas-Espinoza
- Laboratorio de Investigación y Servicios Analíticos Noreste, Centro de Investigación, Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. subsede Noreste (CIATEJ Norestey), Mexico
| | - K Saldaña-Villanueva
- Investigador por México-Conahcyt, Laboratorio de Investigación y Servicios Analíticos Noreste, Centro de Investigación, Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. subsede Noreste (CIATEJ Noreste), Mexico
| | - G Núñez-Mojica
- Investigador por México-Conahcyt, Laboratorio de Investigación y Servicios Analíticos Noreste, Centro de Investigación, Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. subsede Noreste (CIATEJ Noreste), Mexico
| | - J M García-Díaz
- Laboratorio de Investigación y Servicios Analíticos Noreste, Centro de Investigación, Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. subsede Noreste (CIATEJ Norestey), Mexico
| | - O Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Mexico
| |
Collapse
|
3
|
Leyva-Morales JB, de Jesús Bastidas-Bastidas P, Valdez-Torres JB, Espinosa-Reyes G, García-Hernández J, Bautista F, Acevedo Sandoval OA. Environmental risk assessment of pesticide use in high-tech agriculture in a valley of northwest Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-18. [PMID: 39599961 DOI: 10.1080/09603123.2024.2431671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
A level 1 Environmental Risk Assessment, based on the USEPA guidelines, was conducted using a risk quotient to evaluate the risk of pesticide use. The Culiacan Valley was chosen as study area because of its importance as agricultural zone in northwest Mexico. Records of pesticide applications allowed the critical contaminants to be identified, and a stratified random sampling was carried out to assess pesticide presence in agricultural soils. For each pesticide detected a toxicity reference value was used, and the risk quotient was determined based on the worst possible scenario for five trophic levels. Critical contaminants such as organochlorines, organophosphates and synthetic pyrethroids represented high risk for aquatic and low risk for terrestrial biota. Overall, the study indicates that a more exhaustive risk assessment should be conducted. This information could be useful in the design of better pesticide regulations aimed at mitigating undesirable environmental consequences.
Collapse
Affiliation(s)
- José Belisario Leyva-Morales
- Área Académica de Química-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), Mineral de la Reforma, Hidalgo, México
| | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio de Análisis de Plaguicidas, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Culiacán, Culiacán, Sinaloa, México
| | - José Benigno Valdez-Torres
- Laboratorio de Análisis de Plaguicidas, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Culiacán, Culiacán, Sinaloa, México
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Laboratorio Universitario de Geofísica Ambiental, Universidad Nacional Autónoma de México, Morelia, México
| | - Otilio Arturo Acevedo Sandoval
- Área Académica de Química-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo (UAEH), Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
4
|
Blackstone NT, Battaglia K, Rodríguez-Huerta E, Bell BM, Decker Sparks JL, Cash SB, Conrad Z, Nikkhah A, Jackson B, Matteson J, Gao S, Fuller K, Zhang FF, Webb P. Diets cannot be sustainable without ensuring the well-being of communities, workers and animals in food value chains. NATURE FOOD 2024; 5:818-824. [PMID: 39438617 DOI: 10.1038/s43016-024-01048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/29/2024] [Indexed: 10/25/2024]
Abstract
The social dimension of sustainable diets, which addresses the impacts of food value chains on people, animals and communities, is under-represented in the food systems field. We present a definition of the social dimension of sustainable diets, clarify its boundaries and propose corresponding outcomes. Three case studies highlight the connectivity of social outcomes with the health, environment and economic dimensions of sustainable diets. The continued development of social metrics, data and methods and the implementation of integrated solutions co-developed with affected communities are needed to transform systems and structures that perpetuate unjust and inequitable food systems outcomes.
Collapse
Affiliation(s)
| | - Kyra Battaglia
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | | | - Brooke M Bell
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jessica L Decker Sparks
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Rights Lab, University of Nottingham, Nottingham, UK
| | - Sean B Cash
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Zach Conrad
- Global Research Institute, William & Mary, Williamsburg, VA, USA
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA
| | - Amin Nikkhah
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Bethany Jackson
- Rights Lab, University of Nottingham, Nottingham, UK
- School of Geography, University of Nottingham, Nottingham, UK
| | - Julia Matteson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Shijun Gao
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Kathy Fuller
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Fang Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Patrick Webb
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
5
|
Rincón-Rubio A, Mérida-Ortega Á, Ugalde-Resano R, Gamboa-Loira B, Rothenberg SJ, González FB, Cebrián ME, López-Carrillo L. Carcinogenic, non-carcinogenic risk, and attributable cases to organochlorine pesticide exposure in women from Northern Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:421. [PMID: 38570395 DOI: 10.1007/s10661-024-12584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
This study aimed to estimate the carcinogenic and non-carcinogenic risk as well as the attributable cases due to exposure to organochlorine pesticides (OCPs): hexachlorobenzene (HCB), dichlorophenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), heptachlor, and chlordane. From serum concentrations of pesticides of interest in a sample of 908 women from Northern Mexico, the risk for both cancer and non-cancer health effects was evaluated. The population attributable fraction (PAF) was also calculated based on summary association estimates between exposure to OCPs and different health events. Findings revealed that due to their OCP exposure slightly less than half of the women in the sample were at increased risk of developing non-cancerous diseases. Moreover, approximately 25% and 75% of participants were at risk of develop some type of cancer associated with their HCB and DDE concentrations, respectively. In addition, it was estimated that 40.5% of type 2 diabetes, 18.7% of endometriosis, and 23.1% of non-Hodgkin's lymphoma cases could have been prevented if women had not been exposed to these OCPs. Results suggest that the use of OCPs may have contributed to the disease burden in the study area and, based on the time required for these substances to be eliminated from the body, there are probably some women who are still at elevated risk of developing diseases associated to OCPs.
Collapse
Affiliation(s)
- Alma Rincón-Rubio
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Ángel Mérida-Ortega
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Rodrigo Ugalde-Resano
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Brenda Gamboa-Loira
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
- Facultad de Medicina, Universidad Autónoma de Yucatán, Av. Itzáes 498, Colonia Centro, C.P. 97000, Mérida, Yucatán, México
| | - Stephen J Rothenberg
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, México
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Col. Santa María Ahuacatitlán, Av. Universidad 655, C.P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
7
|
Kashyap P, Rajpurohit D, Modi K, Bhasin H, Fernandes P, Mishra D. Benzene Sulfonyl Linked Tetrasubstituted Thiacalix[4]arene for Selective and Sensitive Fluorometric Sensing of Sulfosulfuron along with Theoretical Studies. J Fluoresc 2023; 33:1961-1970. [PMID: 36930343 DOI: 10.1007/s10895-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Herein, we designed two fluorescent tetrasubstituted benzene sulfonyl appended Thiacalix[4]arene receptors named L1 and L2, which sensitively and selectively detect Sulfosulfuron among other herbicides and pesticides. The detection limit (LOD) was found to be 0.21 ppm and 0.35 ppm, and the enhancement constant (Ks) was determined to be 7.07 X 104 M-1 and 5.55 X 104 M-1 for L1 and L2, respectively. Using the non-linear regression method, the association constant was obtained as 2.1 X 104 M-1 and 2.23 X 104 M-1 whereas, the binding ratio was found to be 1:1 for both L1 and L2, respectively. Additionally, the interference studies show the selective nature of receptors for Sulfosulfuron among its sulfonylurea family. To further confirm the interaction mechanism, 1H-NMR spectroscopy, and a computational investigation were carried out, which validates the 1:1 binding ratio. The receptors were found to be recyclable in nature with simple acid-base treatment. This new approach of using supramolecules as fluorescent probes for sensitive and selective detection of herbicides is rare in the literature.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, 382740, Mehsana, Gujarat, India.
| | - Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Patrick Fernandes
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
8
|
Ruiz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Romero-Bañuelos CA, Verdín-Betancourt FA, Herrera-Moreno JF, Ponce-Vélez G, Gaspar-Ramírez O, Bastidas-Bastidas PDJ, González FB, Rojas-García AE. The situation of chlorpyrifos in Mexico: a case study in environmental samples and aquatic organisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6323-6351. [PMID: 37301778 DOI: 10.1007/s10653-023-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides. Because CPF was described as a toxic compound without safe levels of exposure for children, certain countries in Latin America and the European Union have banned or restricted its use; however, in Mexico it is used very frequently. The aim of this study was to describe the current situation of CPF in Mexico, as well as its use, commercialization, and presence in soil, water, and aquatic organisms in an agricultural region of Mexico. Structured questionnaires were applied to pesticide retailers to determine the sales pattern of CPF (ethyl and methyl); in addition, monthly censuses were conducted with empty pesticide containers to assess the CPF pattern of use. Furthermore, samples of soil (48 samples), water (51 samples), and fish (31 samples) were collected, which were analyzed chromatographically. Descriptive statistics were performed. The results indicate that CPF was one of the most sold (3.82%) and employed OP (14.74%) during 2021. Only one soil sample was found above the CPF limit of quantification (LOQ); in contrast, all water samples had CPF levels above the LOQ (x̄ = 4614.2 ng/L of CPF). In the case of fish samples, 6.45% demonstrated the presence of methyl-CPF. In conclusion, the information obtained in this study indicates the need for constant monitoring in the area, since the presence of CPF in soil, water, and fish constitutes a threat to the health of wildlife and humans. Therefore, CPF should be banned in Mexico to avoid a serious neurocognitive health problem.
Collapse
Affiliation(s)
- Miguel Alfonso Ruiz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km. 9 Carretera Tepic-Compostela, C.P. 63780, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Carlos Alberto Romero-Bañuelos
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N, Ciudad del Conocimiento, Tepic, Nayarit, C.P. 63173, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Guadalupe Ponce-Vélez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, C.P. 04510, Cd. de México, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste (CIATEJ), Apodaca, N.L, C.P. 66629, Mexico
| | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (Residuos de Plaguicidas), Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km. 5.5, Unidad Culiacán, C.P. 80110, Mexico
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México.
| |
Collapse
|
9
|
Leon-Borges JA, Aguirre-García GJ, Silva VM, Lizardi-Jiménez MA. Hydrocarbons and other risks in a beekeeping area of México: the precautionary principle for prevention and biotechnology for remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69499-69513. [PMID: 37140869 DOI: 10.1007/s11356-023-27370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The Yucatan Peninsula is the most important beekeeping region. However, the presence of hydrocarbons and pesticides violates the human right to a healthy environment twice over; it can affect human beings directly due to its toxicological characteristics, but it also constitutes a risk, not very well dimensioned, regarding the loss of biodiversity of the ecosystem via the impact on pollination. On the other hand, the precautionary principle obliges the authorities to prevent damage to the ecosystem that may be caused by the productive activity of individuals. Although there are studies that separately warn about the decrease of bees in the Yucatan due to industrial activity, this work has the novelty of presenting an intersectoral analysis of the risk that includes the soy industry, the swine industry and the tourist industry. The latter incorporates a new risk not considered until now, which is the presence of hydrocarbons in the ecosystem. Additionally, we can demonstrate that hydrocarbons, such as diesel and gasoline, should be avoided when using no genetically modified organisms (GMOs) in bioreactors. The objective of this work was to propose the precautionary principle around the risks in a beekeeping area and to propose biotechnology without using GMOs.
Collapse
Affiliation(s)
| | | | - Violeta Mendezcarlo Silva
- Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 2da. Sección, C. P. 78210, San Luis Potosí , San Luis Potosí, Mexico
| | - Manuel Alejandro Lizardi-Jiménez
- CONACyT-Universidad Autónoma de San Luis Potosí, MDH, LGAC Estudios Sociales, Sierra Leona 550, 2da. Sección, C. P. 78210, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
10
|
Paker NP, Mehmood S, Javed MT, Damalas CA, Rehman FU, Chaudhary HJ, Munir MZ, Malik M. Elucidating molecular characterization of chlorpyrifos and profenofos degrading distinct bacterial strains for enhancing seed germination potential of Gossypium arboreum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48120-48137. [PMID: 36752920 DOI: 10.1007/s11356-023-25343-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CP) and profenofos (PF) are organophosphate pesticides (OPs) widely used in agriculture and are noxious to both fauna and flora. The presented work was designed to attenuate the toxicity of both pesticides in the growth parameters of a cotton crop by applying plant growth-promoting rhizobacteria (PGPR), namely Pseudomonas aeruginosa PM36 and Bacillus sp. PM37. The multifarious biological activities of both strains include plant growth-promoting traits, including phosphate solubilization; indole-3-acetic acid (IAA), siderophore, and HCN production; nitrogen fixation; and enzymatic activity such as cellulase, protease, amylase, and catalase. Furthermore, the molecular profiling of multi-stress-responsive genes, including acdS, ituC, czcD, nifH, and sfp, also confirmed the plant growth regulation and abiotic stress tolerance potential of PM36 and PM37. Both strains (PM36 and PM37) revealed 92% and 89% of CP degradation at 50 ppm and 87% and 81% at 150 ppm within 7 days. Simultaneously 94% and 98% PF degradation was observed at 50 ppm and 90% and 92% at 150 ppm within 7 days at 35 °C and pH 7. Biodegradation was analyzed using HPLC and FTIR. The strains exhibited first-order reaction kinetics, indicating their reliance on CP and PF as energy and carbon sources. The presence of opd, mpd, and opdA genes in both strains also supported the CP and PF degradation potential of both strains. Inoculation of strains under normal and OP stress conditions resulted in a significant increase in seed germination, plant biomass, and chlorophyll contents of the cotton seedling. Our findings indicate that the strains PM36 and PM37 have abilities as biodegraders and plant growth promoters, with potential applications in crop sciences and bioremediation studies. These strains could serve as an environmentally friendly, sustainable, and socially acceptable solution to manage OP-contaminated sites.
Collapse
Affiliation(s)
- Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | | | - Christos A Damalas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zeshan Munir
- Schools of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd, Shenzhen, 518055, China
| | - Mahrukh Malik
- Drug Control and Traditional Medicines Division, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|