1
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Stawarska A, Lepionka T, Białek A, Gawryjołek M, Bobrowska-Korczak B. Pomegranate Seed Oil and Bitter Melon Extract Affect Fatty Acids Composition and Metabolism in Hepatic Tissue in Rats. Molecules 2020; 25:molecules25225232. [PMID: 33182664 PMCID: PMC7697534 DOI: 10.3390/molecules25225232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Pomegranate seed oil (PSO) and bitter melon dried fruits (BME) are used as natural remedies in folk medicine and as dietary supplements. However, the exact mechanism of their beneficial action is not known. The aim of study was to assess how the diet supplementation with PSO and/or with an aqueous solution of Momordica charantia affects the metabolism of fatty acids, fatty acids composition and the level of prostaglandin E2 (PGE2) in rat liver. Animals (Sprague-Dawley female rats, n = 48) were divide into four equinumerous groups and fed as a control diet or experimental diets supplemented with PSO, BME or both PSO and BME for 21 weeks. Fatty acids were determined using gas chromatography with flame ionization detection. PSO added to the diet increased the rumenic acid content (p < 0.0001) and increased accumulation of n-6 fatty acids (p = 0.0001) in hepatic tissue. Enrichment of the diet either with PSO or with BME reduced the activity of Δ6-desaturase (D6D) (p = 0.0019), whereas the combination of those dietary factors only slightly increased the effect. Applied dietary supplements significantly reduced the PGE2 level (p = 0.0021). No significant intensification of the influence on the investigated parameters resulted from combined application of PSO and BME. PSO and BME have potential health-promoting properties because they influence fatty acids composition and exhibit an inhibiting effect on the activity of desaturases and thus they contribute to the reduction in the metabolites of arachidonic acid (especially PGE2).
Collapse
|
3
|
Lan H, Lai B, Zhao P, Dong X, Wei W, Ye Y, Wu Z. Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb Pathog 2019; 138:103828. [PMID: 31682997 DOI: 10.1016/j.micpath.2019.103828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
Abstract
Cucumber mosaic virus (CMV) caused huge agricultural impact on Passiflora edulis. However, the interactions between CMV and P. edulis are poorly unknown, which lead to lack of prevention and control measures. In this study, we identified the infection of CMV in P. edulis through modern small RNA sequencing (sRNA-seq) technology combined with traditional electron microscope and polymerase chain reaction (PCR) methods. We also confirmed CMV infection adversely affected or modulated the contents of phytochemicals and further injured the development of P. edulis; inversely, P. edulis modulated its resistance to CMV stress by increasing the levels of secondary metabolites and the activities of antioxidant enzymes components. This is of significant importance to understand the interaction between virus infection and plant host.
Collapse
Affiliation(s)
- Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China.
| | - Baochun Lai
- Zhangzhou Institute of Agricultural Science of Fujian, 363000, PR China
| | - Peng Zhao
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Xu Dong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Wanting Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Yanjie Ye
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Zujian Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|
4
|
Chen S, Yu N, Yang S, Zhong B, Lan H. Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents. Virol J 2018; 15:168. [PMID: 30382859 PMCID: PMC6211467 DOI: 10.1186/s12985-018-1084-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Viral disease has become the most severe constraint for the cultivation and production of Passiflora edulis in China. The infection of Telosma mosaic virus (TeMV), a potyvirus, and its effects on the phytochemical components of P. edulis remain largely unknown in China. Methods P. edulis plants showing distorted leaves and severe mosaic skin on green fruit were identified with TeMV infection through traditional transmission electron microscopy, RT-PCR and modern small RNA sequencing (sRNA-seq) platform. The contents of phytochemical components and the activities of antioxidative enzymes were compared between virus-infected and virus-free P. edulis to confirm the effects of TeMV infection on host plant. Results Firstly, approximately 700 nm linear virus particles, representing TeMV, were detected in infected P. edulis fruits and leaves with Electron microscopy. Partial coat protein genes of TeMV were successfully amplified by RT-PCR in infected P. edulis leaves and fruits but not in healthy plants. Abundant small interference RNAs (siRNAs) sequences, showing several characterizations, were specifically generated from the TeMV genome in infected plant fruits by sRNA-seq platform. Furthermore, fruit length, fruit thickness (wideness) and fruit weight decreased significantly due to TeMV infection. The levels of total protein and total sugar increased significantly; however, the level of total fat, total acid and vitamin C decreased obviously after TeMV infection. The level of total phenols, a secondary metabolite, was obviously higher in TeMV-infected than TeMV-free P. edulis fruit. The activities of superoxide dismutases (SOD) and catalases (CAT) obviously increased in TeMV-infected in comparison with healthy P. edulis fruit. Conclusions TeMV infection adversely affected the development of P. edulis fruits, differently and selectively modulated the phytochemical components of P. edulis fruits. In turn, P. edulis plants enhanced their tolerance to the stress of TeMV infection by increasing the secondary metabolite level and the antioxidative capacity. This is of significant importance to understand the effects of TeMV infection on the biochemical changes and the antioxidant defense mechanism in P. edulis.
Collapse
Affiliation(s)
- Shuangshuang Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Nannan Yu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Shaohuan Yang
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Baoping Zhong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China
| | - Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Xianqianzhi street, Xiangcheng district, Zhangzhou, Fujian, 363000, People's Republic of China.
| |
Collapse
|
5
|
George B, Kumar RV, Chakraborty S. Molecular characterization of Chilli leaf curl virus and satellite molecules associated with leaf curl disease of Amaranthus spp. Virus Genes 2013; 48:397-401. [PMID: 24368759 DOI: 10.1007/s11262-013-1027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
Amaranthus, collectively known as amaranth, is an annual or short-lived perennial plant used as leafy vegetables, cereals and for ornamental purposes in many countries including India. During 2011, leaf samples of Amaranthus plants displaying leaf curling, leaf distortion, leaf crinkling and yellow leaf margins were collected from Banswara district, Rajasthan in India. Full-length clones of a monopartite begomovirus, a betasatellite and an alphasatellite were characterized. The complete nucleotide sequence of the isolated begomovirus features as a typical 'Old World' begomovirus with the highest nucleotide per cent identity with Chilli leaf curl virus and hence, considered as an isolate of Chilli leaf curl virus. The complete nucleotide sequences of betasatellite and alphasatellite possess maximum nucleotide identity with Tomato yellow leaf curl Thailand betasatellite and Chilli leaf curl alphasatellite, respectively. This is the first report of the association of chilli-infecting begomovirus and satellite molecules infecting a new host, Amaranthus, causing leaf curl disease.
Collapse
Affiliation(s)
- B George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | | | | |
Collapse
|
6
|
Rajamoorthi A, Shrivastava S, Steele R, Nerurkar P, Gonzalez JG, Crawford S, Varvares M, Ray RB. Bitter melon reduces head and neck squamous cell carcinoma growth by targeting c-Met signaling. PLoS One 2013; 8:e78006. [PMID: 24147107 PMCID: PMC3798549 DOI: 10.1371/journal.pone.0078006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains difficult to treat, and despite of advances in treatment, the overall survival rate has only modestly improved over the past several years. Thus, there is an urgent need for additional therapeutic modalities. We hypothesized that treatment of HNSCC cells with a dietary product such as bitter melon extract (BME) modulates multiple signaling pathways and regresses HNSCC tumor growth in a preclinical model. We observed a reduced cell proliferation in HNSCC cell lines. The mechanistic studies reveal that treatment of BME in HNSCC cells inhibited c-Met signaling pathway. We also observed that BME treatment in HNSCC reduced phosphoStat3, c-myc and Mcl-1 expression, downstream signaling molecules of c-Met. Furthermore, BME treatment in HNSCC cells modulated the expression of key cell cycle progression molecules leading to halted cell growth. Finally, BME feeding in mice bearing HNSCC xenograft tumor resulted in an inhibition of tumor growth and c-Met expression. Together, our results suggested that BME treatment in HNSCC cells modulates multiple signaling pathways and may have therapeutic potential for treating HNSCC.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Shubham Shrivastava
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Pratibha Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Juan G. Gonzalez
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Susan Crawford
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
- Saint Louis University Cancer Center, Saint Louis University, St. Louis, Missouri, United States of America
| | - Mark Varvares
- Saint Louis University Cancer Center, Saint Louis University, St. Louis, Missouri, United States of America
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
- Saint Louis University Cancer Center, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jaiswal N, Singh M, Dubey RS, Venkataramanappa V, Datta D. Phytochemicals and antioxidative enzymes defence mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). 3 Biotech 2013; 3:287-295. [PMID: 28324587 PMCID: PMC3723865 DOI: 10.1007/s13205-012-0100-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022] Open
Abstract
Pumpkin (Cucurbita moschata) samples showing yellow vein mosaic disease in Varanasi region were identified with begomovirus infection using PCR amplification. A sequencing analysis of the full genome revealed that it is a strain of Tomato leaf curl Palampur virus (GenBank ID. FJ931537). Phytochemical composition and antioxidative enzyme levels were compared in infected and healthy plants. The study revealed that the amount of total protein declined in the infected leaves but elevated up to 135 % in the fruits of infected plants, whereas vitamin C and antioxidants declined in infected leaves as well as fruits. There was substantial increase in total phenol content in leaves (72 %) and fruits (300 %) of infected plants. In infected samples, substantial increase in activities of superoxide dismutases (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) was observed as compared to the uninfected control plants. The native PAGE showed alterations in the intensities of isozyme bands in the infected plants. The APX, GPX, CAT, SOD and glutamate dehydrogenase (GDH) bands were intense in the infected plants, whereas the GR isozyme showed reduced intensity in diseased plants.
Collapse
|
8
|
Borah BK, Dasgupta I. Begomovirus research in India: a critical appraisal and the way ahead. J Biosci 2013; 37:791-806. [PMID: 22922204 DOI: 10.1007/s12038-012-9238-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Begomoviruses are a large group of whitefly-transmitted plant viruses containing single-stranded circular DNA encapsidated in geminate particles. They are responsible for significant yield losses in a wide variety of crops in India. Research on begomoviruses has focussed on the molecular characterization of the viruses, their phylogenetic analyses, infectivities on host plants, DNA replication, transgenic resistance, promoter analysis and development of virus-based gene silencing vectors. There have been a number of reports of satellite molecules associated with begomoviruses. This article aims to summarize the major developments in begomoviral research in India in the last approximately 15 years and identifies future areas that need more attention.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi 110 021, India
| | | |
Collapse
|
9
|
Asiamah D, Verghese M, Boateng J, Kanda B, Shackelfor L, Walker L. Chemopreventive Potential of Bitter Melon (Momordica charantia) against Precancerous Lesions in the Colon of Fisher 344 Male Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijcr.2011.36.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ray RB, Raychoudhuri A, Steele R, Nerurkar P. Bitter Melon (Momordica charantia) Extract Inhibits Breast Cancer Cell Proliferation by Modulating Cell Cycle Regulatory Genes and Promotes Apoptosis. Cancer Res 2010; 70:1925-31. [DOI: 10.1158/0008-5472.can-09-3438] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Appiah-Opong R, Commandeur JN, Axson C, Vermeulen NP. Interactions between cytochromes P450, glutathione S-transferases and Ghanaian medicinal plants. Food Chem Toxicol 2008; 46:3598-603. [DOI: 10.1016/j.fct.2008.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 08/11/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
|
12
|
Momordica charantia (bitter melon) reduces plasma apolipoprotein B-100 and increases hepatic insulin receptor substrate and phosphoinositide-3 kinase interactions. Br J Nutr 2008; 100:751-9. [DOI: 10.1017/s0007114508937430] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aqueous extracts or juice from unripened fruit of Momordica charantia (bitter melon) has traditionally been used in the treatment of diabetes and its complications. Insulin resistance is characterized by significant down-regulation of hepatic insulin signalling as documented by attenuated phosphorylation of insulin receptor (IR), IR substrates 1 and 2, phosphoinositide-3 kinase, protein kinase B, and over-expression of phosphotyrosine phosphatase 1B. We recently demonstrated that bitter melon juice (BMJ) is a potent inhibitor of apoB secretion and TAG synthesis and secretion in human hepatoma cells, HepG2, that may be involved in plasma lipid- and VLDL-lowering effects observed in animal studies. The aim of this study was to evaluate the effects of BMJ on plasma apoB levels and hepatic insulin signalling cascade in mice fed high-fat diet (HFD). Female C57BL/6 mice (4–6 weeks old) were randomized into three groups receiving regular rodent chow, HFD and HFD+BMJ. The data indicate that BMJ not only improves glucose and insulin tolerance but also lowers plasma apoB-100 and apoB-48 in HFD-fed mice as well as modulates the phosphorylation status of IR and its downstream signalling molecules. Investigating the biochemical and molecular mechanisms involved in amelioration of diabetic dyslipidaemia by BMJ may lead to identification of new molecular targets for dietary/alternative therapies.
Collapse
|
13
|
Wu SJ, Ng LT. Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.03.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Nerurkar PV, Lee YK, Linden EH, Lim S, Pearson L, Frank J, Nerurkar VR. Lipid lowering effects of Momordica charantia (Bitter Melon) in HIV-1-protease inhibitor-treated human hepatoma cells, HepG2. Br J Pharmacol 2006; 148:1156-64. [PMID: 16847441 PMCID: PMC1752016 DOI: 10.1038/sj.bjp.0706821] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Hyperlipidemic effects of HIV-1-protease inhibitors (PI) are associated with increased hepatic production of triglyceride (TG)-rich lipoproteins, rather than lipoprotein clearance. PI are known to increase apolipoprotein B (apoB) secretion, apoC-III mRNA expression and decrease apoA-1 secretion. Nutritional therapy remains an important strategy to manage PI-associated hyperlipidemia. 2. This study investigated the in vitro efficacy of Asian vegetable, Momordica charantia or bitter melon (BM) to ameliorate PI-associated apoB and lipid abnormalities in HepG2 cells. 3. Our study demonstrates that bitter melon juice (BMJ) significantly reduced apoB secretion and apoC-III mRNA expression and normalized apoA-I expression in PI-treated HepG2 cells. BMJ also significantly reduced cellular TG and microsomal TG transfer protein, suggesting that lipid bioavailability and lipidation of apoB assembly may play a role in decreased apoB secretion. 4. Identifying molecular targets of BM may offer alternative dietary strategies to decrease PI-associated hyperlipidemia and improve quality of life among HIV-1-infected patients.
Collapse
Affiliation(s)
- Pratibha V Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, Room 415H, East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | |
Collapse
|