1
|
Huang Y, Yang C, Fu B, Guo H, Chen Y, Xu D. Impact of Ligilactobacillus salivarius Li01 on benzo[ a]pyrene-induced colitis, based on host-microbiome interactions in Mongolian gerbils. Front Nutr 2025; 12:1494525. [PMID: 40078411 PMCID: PMC11896860 DOI: 10.3389/fnut.2025.1494525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Background Probiotics supplementations have been regarded as an effective strategy for colitis treatment. However, the effect of Ligilactobacillus salivarius Li01 on benzo[a]pyrene (BaP)-induced colitis in Mongolian gerbils remains unclear. In this study, we leverage a BaP-induced model of colitis that exhibits significant remission following Ligilactobacillus salivarius Li01 intervention, to conduct an animal experiment that integrates histopathological assessment, inflammatory cytokines, 16S rRNA sequencing, targeted metabolomic profiling to investigate the relationship between Ligilactobacillus salivarius Li01, gut microbiota, and colitis. Results We demonstrated that the improvements in colon histopathological assessment and inflammatory cytokines by Ligilactobacillus salivarius Li01 supplementation are accompanied by alterations in gut microbiota structure marked by increased abundance of strains with probiotic potential belonging to Bifidobacterium and Eubacterium_coprostanoligenes. Targeted metabolomic profiling analysis showed that Ligilactobacillus salivarius Li01 supplementation increases the concentration of acetic, propionic, butyric, and valeric acid. Correlation analysis showed that the alteration in the indicators associated with colitis is closely correlated to the changed microbial taxa and short-chain fatty acids (SCFAs). Conclusion These data highlighted that Ligilactobacillus salivarius Li01 supplementation ameliorated the BaP-induced colitis, probably via modulating the structure of gut microbiota and promoting the production of SCFAs. Our findings provide preliminary evidence for a possible therapeutic strategy for the treatment of colitis based on host-microbiome interactions.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Can Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Bingmeng Fu
- Department of Nutrition, Child, and Adolescent Health, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Honggang Guo
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, China
| | - Yunxiang Chen
- Center for Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Dengfeng Xu
- Department of Nutrition, Child, and Adolescent Health, School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Zhu YT, Ma Q, Zhang XY, Gong GZ, Wang YX, Zeng LZ, Li RT, Xiao C, Zuo Y. Functional yacon juice fermented by Lactiplantibacillus plantarum QS7T: Chemical composition, flavor volatiles, and gut microbiota modulation. J Food Sci 2025; 90:e17528. [PMID: 39949246 DOI: 10.1111/1750-3841.17528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 05/09/2025]
Abstract
To prepare functional yacon juice, this study investigates the optimal fermentation duration, shelf-life, chemical composition, and flavor volatiles of yacon juice fermented by Lactiplantibacillus plantarum QS7T capable of utilizing fructo-oligosaccharides (FOS), along with its effects on gut microbiota. The optimal fermentation period was determined as 30 h, resulting in essential parameters: 3.46 g L-1 for total acids and a viable lactic acid bacteria (LAB) count of 2.3 × 108 CFU mL-1. The predicted shelf life when stored at 4°C is 28 days. Throughout storage, the juice maintained significant FOS and viable LAB count (8.0 × 107 CFU mL-1). Total short-chain fatty acid significantly increased post-fermentation and storage, reaching 177.86 µg mL-1. The total content and types of volatile components in yacon juice after fermentation by L. plantarum QS7T significantly increased, thus altering the flavor and improving the juice's appeal. Functional yacon juice also induced significant alterations in gut microbiota structure and abundance in mice, including increasing the abundance of beneficial microbes such as Firmicutes, Actinobacteriota, Faecalibaculum, Dubosiella, Bifidobacterium, and Akkermansia. These results indicate fermented yacon juice's potential as a functional food for gut microbiota modulation and anti-inflammatory benefits.
Collapse
Affiliation(s)
- Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
| | - Qian Ma
- College of Life Science, Sichuan Normal University, Chengdu, China
- National Center for Alcohol and Processed Food Quality Inspection and Testing, Chengdu Institute of Product Quality Inspection Co., Ltd., Chengdu, China
| | - Xin-Yu Zhang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Gui-Zhen Gong
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yi-Xin Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lin-Zhi Zeng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Rui-Tong Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Chen Xiao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
3
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Chantanawilas P, Pahumunto N, Thananimit S, Teanpaisan R. Anticandidal Activity of Various Probiotic Lactobacillus Strains and Their Efficacy Enhanced by Prebiotic Supplementation. Curr Microbiol 2024; 81:271. [PMID: 39012492 DOI: 10.1007/s00284-024-03800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Probiotics and prebiotics have been considered as alternative approaches for promoting health. This study aimed to investigate the anticandidal potential of various probiotic Lactobacillus strains and their cell-free supernatants (CFSs). The study assessed the impact of inulin and some fruits as prebiotics on the growth of selected probiotic strains in relation to their anticandidal activity, production of short-chain fatty acids, total phenolic content, and antioxidant activity. Results revealed variations in anticandidal activity based on the specific strains and forms of probiotics used. Non-adjusted CFSs were the most effective against Candida strains, followed by probiotic cells and adjusted CFSs (pH 7). Lacticaseibacillus rhamnosus SD4, L. rhamnosus SD11 and L. rhamnosus GG displayed the strongest anticandidal activity. Non-adjusted CFSs from L. rhamnosus SD11, L. rhamnosus SD4 and L. paracasei SD1 exhibited notable anticandidal effects. The adjusted CFSs of L. rhamnosus SD11 showed the highest anticandidal activity against all non-albicans Candida (NAC) strains, whereas the others were ineffective. Supplementation of L. rhamnosus SD11 with prebiotics, particularly 2% (w/v) mangosteen, exhibited positive results in promoting probiotic growth, short-chain fatty acids production, total phenolic contents, and antioxidant activity, and the subsequent enhancing anticandidal activity against both C. albicans and NAC strains compared to conditions without prebiotics. In conclusion, both live cells and CFSs of tested strains, particularly L. rhamnosus SD11, exhibited the best anticandidal activity. Prebiotics supplementation, especially mangosteen, enhanced probiotic growth and beneficial metabolites against Candida growth. These finding suggested that probiotics and prebiotic supplementation may be an effective alternative treatment for Candida infections.
Collapse
Affiliation(s)
- Panita Chantanawilas
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Dentistry, Research Center of Excellence for Oral Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchera Thananimit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Science, Center for Genomics and Bioinformatics Research, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rawee Teanpaisan
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
- Medical Science Research and Innovation Institute, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
6
|
Qi S, Jiang B, Huang C, Jin Y. Dual Regulation of Sulfonated Lignin to Prevent and Treat Type 2 Diabetes Mellitus. Biomacromolecules 2023; 24:841-848. [PMID: 36608216 DOI: 10.1021/acs.biomac.2c01267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the rapid increase of diabetes cases in the world, there is an increasing demand for slowing down and managing diabetes and its effects. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus (T2DM) is to reduce carbohydrate digestibility by controlling the activities of α-amylase and α-glucosidase to control postprandial hyperglycemia and promote the growth of intestinal beneficial bacteria. In this work, the effects of sulfonated lignin with different sulfonation degrees (0.8 mmol/g, SL1; 2.9 mmol/g, SL2) on the inhibition of α-amylase and α-glucosidase and the proliferation of intestinal beneficial bacteria in vitro were investigated. The results showed that both SL1 and SL2 can inhibit the activity of α-amylase and α-glucosidase. The inhibition capacity (IC50, 32.35 μg/mL) of SL2 with a low concentration (0-0.5 mg/mL) to α-amylase was close to that of acarbose to α-amylase (IC50, 27.33 μg/mL). Compared with the control groups, the bacterial cell concentrations of Bifidobacteria adolescentis and Lactobacillus acidophilus cultured with SL1 and SL2 increased in varying degrees (8-36%), and the produced short-chain fatty acids were about 1.2 times higher. This work demonstrates the prospect of sulfonated lignin as a prebiotic for the prevention and treatment of T2DM, which provides new insights for opening up a brand new field of lignin.
Collapse
Affiliation(s)
- Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
SWE ZM, CHUMPHON T, PANGJIT K, PROMSAI S. Use of pigmented rice as carrier and stingless bee honey as prebiotic to formulate novel synbiotic products mixed with three strains of probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Saran PROMSAI
- Kasetsart University, Thailand; Kasetsart University, Thailand
| |
Collapse
|
8
|
Spore Powder of Paecilomyces hepiali Shapes Gut Microbiota to Relieve Exercise-Induced Fatigue in Mice. Nutrients 2022; 14:nu14142973. [PMID: 35889929 PMCID: PMC9323605 DOI: 10.3390/nu14142973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Paecilomyces hepiali, a fungal strain isolated from natural Ophiocordyceps sinensis, contains similar pharmacologically active components, has been used widely as a substitute of O. sinensis in functional food and medicine. However, the components and anti-fatigue effects of P.hepiali spores and their mechanisms of action are largely unknown. Here, we compared the chemical composition in P.hepiali spore (HPS) and mycelium (HPM) by liquid chromatography with tandem mass spectrometry analysis. We found 85 metabolites with significant differences, and HPS contains more L-Malic acid, Oxalacetic acid, Fructose-1,6-bisphosphate, and L-Arginine than HPM. Then we evaluated their anti-fatigue effects and regulatory effects on the gut microbiota in mice. The forced swimming time (SW) was only significantly increased in HPS groups: the high and low dose of the HPS group was 101% and 72% longer than the control group, respectively. Both HPS and HPM treatment decreased lactic acid, blood urea nitrogen, creatine kinase while increased lactate dehydrogenase (LDH) levels in the blood. Moreover, mice treated with HPS and HPM showed less skeletal muscle fiber spacing and breakage. The relative abundance of Alistips, Eubacterium, Bacterium, Parasutterella, and Olsenella in the gut microbiota of the HPS group was higher than that in the HPM group through 16S rRNA gene sequencing analysis. These changes may be related to the regulation of nucleotide, amino acid, and carbohydrate metabolism. Correlation analysis between the gut microbiota and fatigue-related indicators suggested that Alistips, Clostridium, Akkermansia, Olsenella, and Lactobacillus were positively correlated with the SW and LDH content. Our findings demonstrated that HPS has beneficial anti-fatigue effects by regulating gut microbiota.
Collapse
|
9
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
10
|
Sew SW, Lu Y, Taniasuri F, Liu SQ. Chemical analysis and flavour compound changes of vegetable blend slurry fermented with selected probiotic bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Ozcan T, Eroglu E. Effect of stevia and inulin interactions on fermentation profile and short‐chain fatty acid production of
Lactobacillus acidophilus
in milk and
in vitro
systems. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tulay Ozcan
- Faculty of Agriculture Department of Food Engineering Bursa Uludag University Gorukle Bursa 16059 Turkey
| | - Ezgi Eroglu
- Faculty of Agriculture Department of Food Engineering Bursa Uludag University Gorukle Bursa 16059 Turkey
| |
Collapse
|
12
|
Gut microbiome a promising target for management of respiratory diseases. Biochem J 2021; 477:2679-2696. [PMID: 32726437 DOI: 10.1042/bcj20200426] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut-lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut-lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.
Collapse
|
13
|
Fattahi Y, Heidari HR, Khosroushahi AY. Review of short-chain fatty acids effects on the immune system and cancer. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Annunziata G, Arnone A, Ciampaglia R, Tenore GC, Novellino E. Fermentation of Foods and Beverages as a Tool for Increasing Availability of Bioactive Compounds. Focus on Short-Chain Fatty Acids. Foods 2020; 9:foods9080999. [PMID: 32722417 PMCID: PMC7466228 DOI: 10.3390/foods9080999] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that fermentation, historically used for the preservation of perishable foods, may be considered as a useful tool for increasing the nutritional value of fermented products, in terms of increases in bioactive compound content, including short-chain fatty acids (SCFAs), as bacteria end-products, whose beneficial effects on human health are well-established. The purpose of the present manuscript is to summarize studies in this field, providing evidence about this novel potential of fermentation. A limited number of studies directly investigated the increased SCFA levels in fermented foods. All studies, however, agree in confirming that levels of SCFAs in fermented products are higher than in unfermented products, recognizing the key role played by the microorganisms in metabolizing food matrices, producing and releasing bioactive substances. According to the available literature, fermentation might be taken into account by the food industry as a natural strategy with no environmental impacts to produce functional foods and beverages with a higher nutritional value and health-promoting compounds.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (E.N.)
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (E.N.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (E.N.)
- Correspondence: ; Tel.: +39-081678610
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (G.A.); (R.C.); (E.N.)
| |
Collapse
|
15
|
Lam KL, Cheng WY, Yang F, Lin S, You L, Chiou J, Kwan HS, Cheung PCK. Framework as a Service, FaaS: Personalized Prebiotic Development for Infants with the Elements of Time and Parametric Modelling of in vitro Fermentation. Microorganisms 2020; 8:microorganisms8050623. [PMID: 32344924 PMCID: PMC7285508 DOI: 10.3390/microorganisms8050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
We proposed a framework with parametric modeling to obtain biological relevant parameters from the total probiotic growth pattern and metabolite production curves. The lag phase, maximum increase rate, and maximum capacity were obtained via a 205-h exploratory In vitro fermentation of a library of 13 structural-characterized prebiotic candidates against an exclusively breastfed infant fecal inoculum. We also conducted 16S rRNA amplicon sequencing of the infant fecal inoculum. Moreover, we introduce a robust composite metabolite-based indicator that reflects the eubiosis/dysbiosis of microbiota to complement the conventional microbial markers. In terms of short-chain fatty acid, we discovered that polymeric beta-glucans from barley demonstrated potential as prebiotic candidates, while alpha-glucans as glycogen showed the least dissolved ammonia production. In terms of total probiotic, beta-glucans from oat and mushroom sclerotia of Pleurotus tuber-regium showed comparable sustainability when compared to alpha-glucans after 48 h. Being classical prebiotic, galacto-oligosaccharides gave the second-highest metabolite-based indicator, followed by lactose. While limited improvement could be made to lactose and oligosaccharides, polymeric beta-glucans from barley avails more capacity for novel prebiotic development, such as structural modification. We anticipate that more similar parallel screening with the element of time and parametric modeling will provide more novel insights.
Collapse
Affiliation(s)
- Ka-Lung Lam
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 000000, China; (K.-L.L.); (W.-Y.C.); (F.Y.); (H.-S.K.)
| | - Wai-Yin Cheng
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 000000, China; (K.-L.L.); (W.-Y.C.); (F.Y.); (H.-S.K.)
| | - Fan Yang
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 000000, China; (K.-L.L.); (W.-Y.C.); (F.Y.); (H.-S.K.)
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China;
| | - Hoi-Shan Kwan
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 000000, China; (K.-L.L.); (W.-Y.C.); (F.Y.); (H.-S.K.)
| | - Peter Chi-Keung Cheung
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 000000, China; (K.-L.L.); (W.-Y.C.); (F.Y.); (H.-S.K.)
- Correspondence: ; Tel.: +852-39436144
| |
Collapse
|
16
|
Ren H, Saliu EM, Zentek J, Goodarzi Boroojeni F, Vahjen W. Screening of Host Specific Lactic Acid Bacteria Active Against Escherichia coli From Massive Sample Pools With a Combination of in vitro and ex vivo Methods. Front Microbiol 2019; 10:2705. [PMID: 31824469 PMCID: PMC6882376 DOI: 10.3389/fmicb.2019.02705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
A novel three-step combination of in vitro and ex vivo screening was established to massively screen host derived lactic acid bacteria (LAB) from the broiler chicken intestine with inhibitory activity against Escherichia coli. In a first step, a massive sample pool consisting of 7102 broiler-derived colonies from intestinal contents were established and sub-cultured. Supernatants thereof were incubated with an E. coli model strain to screen suitable isolates with inhibitory activity. A total of 76 isolates of interest were subsequently further studied based on either pH dependent or -independent activity in the second step of the assay. Here, in-depth growth inhibition of the E. coli model strain and the potential of isolates for lactic acid production as inhibitory substance were indexed for all isolates. Resulting scatter plots of both parameters revealed five isolates with exceptional inhibitory activity that were further studied under ex vivo condition in the third step of the assay. These isolates were taxonomically classified as strains of the species Lactobacillus agilis, Lactobacillus salivarius, and Pediococcus acidilactici. Samples from the broiler chicken intestine were inoculated with the Lactobacillus isolates and the E. coli model strain. After 8 and 24 h incubation, respectively, growth of the E. coli model strain was monitored by cultivation of the E. coli strain in antibiotic supplemented medium. By their superior inhibitory activity against the E. coli model strain, one L. agilis and one L. salivarius strain were selected and characterized for further application as probiotics in broiler chicken. Additionally, their antibiotic resistance patterns and resilience under gastric stress of isolates were also characterized. The results of this study demonstrate that the novel isolation procedure was able to efficiently and rapidly isolate and identify bacterial strains from a massive sample pool with inhibitory potential against specific types of bacteria (here E. coli). The introduction of the final ex vivo selection step additionally confirmed the inhibitory activity of the strains under conditions simulating the intestinal tract of the host. Furthermore, this method revealed a general potential for the isolation of antagonistic strains that active against other pathogenic bacteria with specific biomarker.
Collapse
Affiliation(s)
- Hao Ren
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Eva-Maria Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | | | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Mary PR, Prashanth KH, Vasu P, Kapoor M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601). Carbohydr Res 2019; 486:107822. [DOI: 10.1016/j.carres.2019.107822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 09/18/2019] [Indexed: 12/28/2022]
|
18
|
James A, Wang Y. Characterization, health benefits and applications of fruits and vegetable probiotics. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1652693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
19
|
Khangwal I, Shukla P. Potential prebiotics and their transmission mechanisms: Recent approaches. J Food Drug Anal 2019; 27:649-656. [PMID: 31324281 PMCID: PMC9307030 DOI: 10.1016/j.jfda.2019.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Prebiotics are non-digestible carbohydrates which can be used as prime source of energy for gut microflora. These can be naturally occurring in fruit and vegetables or can be made synthetically by enzymatic digestions. New versatile sources of prebiotics had been found nowadays for economic commercialization. This review will decipher on highlighting the importance of prebiotics in immunomodulation and nutrient absorption abilities of gut, as it is important for the anti-effective capacity of the organism especially in the neonatal period. Moreover, new prebiotics transmission strategies with higher penetrating capacity such as microencapsulation and immobilization have been discussed. In addition to this, literature had shown the modulation of gut microflora by the continuous use of prebiotics in many disorders so here, the role of prebiotics in health-related issues such as diabetes and inflammatory bowel disease (IBS) have been explained.
Collapse
|
20
|
Khangwal I, Shukla P. Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech 2019; 9:187. [PMID: 31065487 PMCID: PMC6485268 DOI: 10.1007/s13205-019-1716-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Prebiotics are necessary natural and synthetic food ingredients that help in the growth and development of gut microflora. There is a complex relationship between gut dysbiosis and microbes, so alteration in both probiotics and prebiotics can reduce illness of gut, which further plays a decisive role in human health. The prebiotic efficiency can be validated using various in vitro and in vivo experiments, and this gives an important insight to this field. This review focuses on these aspects including the standardized assessment of prebiotics and its metabolic products for customary applications. This review has also summarized the mechanism of their beneficial actions such as immunomodulation, nutrient absorption, pathogen inhibition, etc., and its significance in human nutrition. In addition to this, some fascinating applications of prebiotics in health-related disorders have also discussed, with current challenges in this facet.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
21
|
Zhao Y, Lukiw WJ. Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Mol Neurobiol 2018; 55:9100-9107. [PMID: 29637444 DOI: 10.1007/s12035-018-1015-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
The gram-negative facultative anaerobe Bacteroides fragilis (B. fragilis) constitutes an appreciable proportion of the human gastrointestinal (GI)-tract microbiome. As is typical of most gram-negative bacilli, B. fragilis secretes an unusually complex mixture of neurotoxins including the extremely pro-inflammatory lipopolysaccharide BF-LPS. LPS (i) has recently been shown to associate with the periphery of neuronal nuclei in sporadic Alzheimer's disease (AD) brain and (ii) promotes the generation of the inflammatory transcription factor NF-kB (p50/p65 complex) in human neuronal-glial cells in primary-culture. In turn, the NF-kB (p50/p65 complex) strongly induces the transcription of a small family of pro-inflammatory microRNAs (miRNAs) including miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155. These ultimately bind with the 3'-untranslated region (3'-UTR) of several target messenger RNAs (mRNAs) and thereby reduce their expression. Down-regulated mRNAs include those encoding complement factor-H (CFH), an SH3-proline-rich multi-domain-scaffolding protein of the postsynaptic density (SHANK3), and the triggering receptor expressed in myeloid/microglial cells (TREM2), as is observed in sporadic AD brain. Hence, a LPS normally confined to the GI tract is capable of driving a NF-kB-miRNA-mediated deficiency in gene expression that contributes to alterations in synaptic-architecture and synaptic-deficits, amyloidogenesis, innate-immune defects, and progressive inflammatory signaling, all of which are characteristics of AD-type neurodegeneration. This article will review the most recent research which supports the idea that bacterial components of the GI tract microbiome such as BF-LPS can transverse biophysical barriers and contribute to AD-type change. For the first-time, these results indicate that specific GI tract microbiome-derived neurotoxins have a strong pathogenic role in eliciting alterations in NF-kB-miRNA-directed gene expression that drives the AD process.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA. .,Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA. .,Departments of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.
| |
Collapse
|