1
|
Barrera-Chamorro L, Fernandez-Prior A, Claro-Cala CM, Del Rio-Vazquez JL, Rivero-Pino F, Montserrat-de la Paz S. Unveiling the neuroprotective impact of virgin olive oil ingestion via the microbiota-gut-brain axis. Food Funct 2025; 16:24-39. [PMID: 39648863 DOI: 10.1039/d4fo04560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The gut-brain axis, a complex system of two-way communication between both organs, plays a key role in overall health. This comprehensive review explores the possible neuromodulatory effects upon consumption of virgin olive oil (VOO) via changes in the gut microbiota. The components found in VOO, such as polyphenols and monounsaturated fatty acids, and their function in influencing the composition of the gut microbiota, focusing on those known to possess neuroactive characteristics, based on a thorough analysis of the literature were investigated. Studies suggest that these compounds, such as hydroxytyrosol and ferulic acid, may protect against neuronal death and inhibit amyloid-β plaques (Aβ) formation. Furthermore, preclinical and clinical research indicates that VOO may promote the growth of beneficial bacteria, such as Lactobacillus and Bifidobacterium, and increase the production of short-chain fatty acids (SCFAs). These changes could be related to improved cognitive function, mood regulation, and neuroprotection. However, limitations of these studies (short duration of studies, the variability in VOO composition and the lack of standardized methodologies) need to be overcome. Furthermore, the limited number of human trials and incomplete understanding of the gut-brain axis make it difficult to establish causality and clinical application of the findings. For this reason, future research should focus on long-term clinical trials with larger cohorts, standardised characterisation of VOO and on exploring the synergistic effects with other dietary components. Furthermore, mechanistic studies should aim to uncover the molecular pathways involved in the gut-brain axis to develop specific dietary interventions for neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Africa Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Carmen M Claro-Cala
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jose L Del Rio-Vazquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Araújo de Vasconcelos MH, Tavares RL, Dutra MLDV, Batista KS, D'Oliveira AB, Pinheiro RO, Pereira RDA, Lima MDS, Salvadori MGDSS, de Souza EL, Magnani M, Alves AF, Aquino JDS. Extra virgin coconut oil ( Cocos nucifera L.) intake shows neurobehavioural and intestinal health effects in obesity-induced rats. Food Funct 2023. [PMID: 37318515 DOI: 10.1039/d3fo00850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate the effect of E-VCO on the neurobehaviour and intestinal health parameters of obesity-induced rats, focusing on food consumption, body composition, bacterial and faecal organic acids and histological analyses in the hippocampus and colon. A total of 32 male Wistar rats were randomized into healthy (HG, n = 16) and obese groups (OG, n = 16), which consumed a control or cafeteria diet for eight weeks, respectively. After this period, they were subdivided into four groups: healthy (HG, n = 8); healthy treated with E-VCO (HGCO, n = 8); obese (OG, n = 8); obese treated with E-VCO (OGCO, n = 8), continuing for another eight weeks with their respective diets. The treated groups received 3000 mg kg-1 of E-VCO and control groups received water via gavage. Food preference, body weight gain, body composition, anxiety- and depression-like behaviour were evaluated. Bacteria and organic acids were evaluated in faeces, and histological analyses of the hippocampus and M1 and M2 macrophages in the colon were performed. E-VCO reduced energy intake (16.68%) and body weight gain (16%), although it did not reduce the fat mass of obese rats. E-VCO showed an antidepressant effect, increased lactic acid bacteria counts and modulated organic acids in obese rats. Furthermore, E-VCO protected the hippocampus from neuronal degeneration caused by the obesogenic diet, decreased the M1 macrophage and increased the M2 macrophage population in the gut. The results suggest neurobehavioural modulation and improved gut health by E-VCO, with promising effects against obesity-related comorbidities.
Collapse
Affiliation(s)
- Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Renata Leite Tavares
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Aline Barbosa D'Oliveira
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Ramon de Alencar Pereira
- Laboratory of Leishmaniasis Pathology, Department of Pathology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Dos Santos Lima
- Laboratory of Food and Beverage Analysis, Department of Food Technology, Institute Federal of Sertão Pernambucano (IF-Sertão PE), Petrolina, Pernambuco, Brazil
| | | | - Evandro Leite de Souza
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Food Microbiology and Biochemistry, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| |
Collapse
|
3
|
Qiao B, Li X, Wu Y, Guo T, Tan Z. Comparative Analysis of the Gut Microbiota in Mice under Lard or Vegetable Blend Oil Diet. J Oleo Sci 2022; 71:1613-1624. [PMID: 36198580 DOI: 10.5650/jos.ess22056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Diet is the most direct and rapid contributor to the gut microbiome. Oils and fats are important nutrients in the human body. The effects of lard or vegetable blend oil on gut microbiota were investigated. Kunming mice were given lard or vegetable blend oil for six weeks. Changes in microbiota composition and abundance in lard or vegetable blend oil diets were analyzed by 16S rRNA gene amplicon sequencing. Our study shows that the gut microbiota of mice changed significantly after ingestion of lard or vegetable blend oil. Lard may synergize with Coriobacteriaceae_UCG-002. Vegetable blend oil has synergistic effects with Akkermansia, Roseburia, and Enteractinococcus. Coriobacteriaceae_UCG-002 showed a significant negative correlation with Glycolysis/Gluconeogenesis. Roseburia was most strongly associated with Starch and sucrose metabolism. According to bacterial function prediction and correlation analysis, long-term consumption of lard or vegetable oil may affect glycolipid metabolism, but lard has a greater impact on human health and consequently host health.
Collapse
Affiliation(s)
- Bo Qiao
- Hunan University of Chinese Medicine
| | - Xiaoya Li
- Hunan University of Chinese Medicine
| | - Yi Wu
- Hunan University of Chinese Medicine
| | - Tan Guo
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University
| | | |
Collapse
|
4
|
Lai WD, Tung TH, Teng CY, Chang CH, Chen YC, Huang HY, Lee HC, Huang SY. Fish oil ameliorates neuropsychiatric behaviors and gut dysbiosis by elevating selected microbiota-derived metabolites and tissue tight junctions in rats under chronic sleep deprivation. Food Funct 2022; 13:2662-2680. [PMID: 35170619 DOI: 10.1039/d2fo00181k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric behaviors caused by sleep deprivation (SD) are severe public health problems in modern society worldwide. This study investigated the effect of fish oil on neuropsychiatric behaviors, barrier injury, microbiota dysbiosis, and microbiota-derived metabolites in SD rats. The rats subjected to SD had significantly elevated blood levels of corticosteroid and lipopolysaccharides and exhibited anxiety-like behavior in the open field test, depression-like behavior in the forced swim test, and cognitive impairment in the Morris water maize test. We observed that the upregulation of proinflammatory cytokines in the SD rats resulted in colonic epithelial barrier injury including a decreased number of goblet cells and increased expression of selected tight junction proteins in the gut and brain. The gut microbiome status revealed a significant decrease in the microbial diversity in the SD rats, especially in probiotics. By contrast, a fish oil-based diet reversed SD-induced behavioral changes and improved the epithelial barrier injury and dysbiosis of the microbiota in the colon. These findings could be attributable to the increase in probiotics and short-chain fatty acid (SCFAs) production, improvement in selected intestinal barrier proteins, increase in SCFA receptor expression, and decrease in blood circulation proinflammatory status due to fish oil supplementation.
Collapse
Affiliation(s)
- Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Department of Family Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
5
|
Gong X, Huang C, Yang X, Chen J, Pu J, He Y, Xie P. Altered Fecal Metabolites and Colonic Glycerophospholipids Were Associated With Abnormal Composition of Gut Microbiota in a Depression Model of Mice. Front Neurosci 2021; 15:701355. [PMID: 34349620 PMCID: PMC8326978 DOI: 10.3389/fnins.2021.701355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiota–gut–brain axis has been considered to play an important role in the development of depression, but the underlying mechanism remains unclear. The gastrointestinal tract is home to trillions of microbiota and the colon is considered an important site for the interaction between microbiota and host, but few studies have been conducted to evaluate the alterations in the colon. Accordingly, in this study, we established a chronic social defeated stress (CSDS) mice model of depression. We applied 16S rRNA gene sequencing to assess the gut microbial composition and gas and liquid chromatography–mass spectroscopy to identify fecal metabolites and colonic lipids, respectively. Meanwhile, we used Spearman’s correlation analysis method to evaluate the associations between the gut microbiota, fecal metabolites, colonic lipids, and behavioral index. In total, there were 20 bacterial taxa and 18 bacterial taxa significantly increased and decreased, respectively, in the CSDS mice. Further, microbial functional prediction demonstrated a disturbance of lipid, carbohydrate, and amino acid metabolism in the CSDS mice. We also found 20 differential fecal metabolites and 36 differential colonic lipids (in the category of glycerolipids, glycerophospholipids, and sphingolipids) in the CSDS mice. Moreover, correlation analysis showed that fecal metabolomic signature was associated with the alterations in the gut microbiota composition and colonic lipidomic profile. Of note, three lipids [PC(16:0/20:4), PG(22:6/22:6), and PI(18:0/20:3), all in the category of glycerophospholipids] were significantly associated with anxiety- and depression-like phenotypes in mice. Taken together, our results indicated that the gut microbiota might be involved in the pathogenesis of depression via influencing fecal metabolites and colonic glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Cheng Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Xun Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
6
|
Foroozan P, Koushkie Jahromi M, Nemati J, Sepehri H, Safari MA, Brand S. Probiotic Supplementation and High-Intensity Interval Training Modify Anxiety-Like Behaviors and Corticosterone in High-Fat Diet-Induced Obesity Mice. Nutrients 2021; 13:1762. [PMID: 34064242 PMCID: PMC8224367 DOI: 10.3390/nu13061762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence supports the role of exercise training and probiotics on reducing obesity. Considering the relationship between obesity and high-fat diet with anxiety indices, the aim of this study was to assess the effect of probiotic supplementation and high-intensity interval training (HIIT) on anxiety-like behaviors, corticosterone and obesity indices in high-fat diet (HFD)-induced obesity mice. Thirty male adult C57BL/6 mice were randomly divided into five groups: (1) Control with normal diet (CON), (2) High-fat diet (HFD), (3) HFD + exercise training (HT), (4) HFD + probiotics supplement (HP) and (5) HFD + exercise training +probiotics (HTP). Exercise training consisted of 8 weeks of high-intensity interval training (HIIT) programs. Probiotics supplement included 0.2 mL Lactobacillus rhamnosus GG. Anxiety-like behaviors were measured by open field (OF) and Elevated plus maze (EPM). OF and EPM tests, visceral fat mass (VFM) measurement, and blood sampling for corticosterone were performed after the intervention. Bodyweight was measured at different stages during the intervention. HFD regime in C57BL/6 mice increased bodyweight, VFM, and serum corticosterone levels and anxiety-like behaviors (p < 0.05). HIIT, probiotic and their combination, decreased bodyweight, VFM, and serum corticosterone levels and improved anxiety-like behavior in the HFD mice (p < 0.05). The effect of a combination of HIIT and probiotic on most of the anxiety indices was more than each one separately (p < 0.5). HIIT and probiotic supplements separately or above all in combination, may have beneficial effects in reducing obesity and anxiety indices.
Collapse
Affiliation(s)
- Parisa Foroozan
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz 7194684334, Iran; (P.F.); (M.K.J.); (J.N.); (H.S.); (M.A.S.)
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz 7194684334, Iran; (P.F.); (M.K.J.); (J.N.); (H.S.); (M.A.S.)
| | - Javad Nemati
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz 7194684334, Iran; (P.F.); (M.K.J.); (J.N.); (H.S.); (M.A.S.)
| | - Hosein Sepehri
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz 7194684334, Iran; (P.F.); (M.K.J.); (J.N.); (H.S.); (M.A.S.)
| | - Mohammad Amin Safari
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz 7194684334, Iran; (P.F.); (M.K.J.); (J.N.); (H.S.); (M.A.S.)
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| |
Collapse
|