1
|
Zheng X, Wang B, Shi L, Wang Z, Zheng F, Xiong Y, Li F, Ding Y, Zhang X, Yin Z. Changes in the Objective Indices Related to Meat Quality of Porcine Longissimus Dorsi Induced by Different Thawing Methods. Foods 2024; 13:3159. [PMID: 39410194 PMCID: PMC11475974 DOI: 10.3390/foods13193159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The quality of frozen pork is adversely affected upon thawing. In this study, the influence of various thawing methods for frozen pork, including cold water (18 °C), room temperature (18 °C), and refrigeration (4 °C) thawing, on physicochemical and nutrient substances were examined. The pork samples (a Chinese local breed: Anqing six-end-white pigs), which were thawed through the above conditions, were compared with controls (fresh porcine longissimus dorsi). Analyses were carried out to determine porcine longissimus dorsi shear force, pH value, crude protein content, antioxidant capacity, amino acid content, and fatty acid content. The results indicated that the shear force, pH value, crude protein content, total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) content of the porcine longissimus dorsi muscle significantly decreased via the three thawing methods compared with the control group (p < 0.05). However, malondialdehyde (MDA) content, intramuscular fat content, inosinate and cholesterol content, essential amino acid content, and umami amino acid proportion in the cold thawing group were not significantly different from the control group (p > 0.05), but there were significant differences between the other two groups. The MDA content of the air thawing and hydrostatic thawing groups significantly increased compared with the control group (p < 0.05), with it being 42.6% and 50.8% higher than the control group, respectively. In addition, the monounsaturated fatty acid content in the pork subjected to the three thawing methods significantly increased compared with the control group (p < 0.05), and the monounsaturated fatty acid content after cold thawing and hydrostatic thawing increased by 18.2% and 21.6%, respectively. In conclusion, refrigeration had less influence on the quality of the Anqing six-end-white pork and was the most suitable thawing method. This study provides a theoretical reference for frozen pork preservation for improving food quality and availing its economic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (B.W.); (Z.W.); (F.L.); (Y.D.); (X.Z.)
| |
Collapse
|
2
|
Fang C, Tang X, Zhang Q, Yu Q, Deng S, Wu S, Fang R. Effects of Dietary Lonicera flos and Sucutellaria baicalensis Mixed Extracts Supplementation on Reproductive Performance, Umbilical Cord Blood Parameters, Colostrum Ingredients and Immunoglobulin Contents of Late-Pregnant Sows. Animals (Basel) 2024; 14:2054. [PMID: 39061516 PMCID: PMC11273922 DOI: 10.3390/ani14142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to determine the effects of dietary Lonicera flos and Sucutellaria baicalensis mixed extract (LSE) supplementation during the late-pregnancy period on the reproductive performance, umbilical cord blood hematological parameters, umbilical cord serum biochemical parameters, immune indices, hormone levels, colostrum ingredients, and immunoglobulin contents of sows. A total of 40 hybrid pregnant sows were randomly assigned to the control group (CON; sows fed a basal diet) and LSE group (LSE; sows fed a basal diet supplemented with 500 g/t PE). The results indicated that dietary LSE supplementation significantly increased (p < 0.05) the number of alive and healthy piglets and the litter weight at birth, and significantly increased (p < 0.05) the platelet counts in umbilical cord blood. Dietary LSE supplementation significantly increased (p < 0.05) the levels of prolactin (PRL) and growth hormone (GH), and the content of interleukin 2 (IL-2) in umbilical cord serum. Moreover, immunoglobulin A (IgA) and immunoglobulin M (IgM) in the colostrum were increased with PE supplementation (p < 0.05). In conclusion, dietary LSE supplementation in late-pregnancy sows could improve reproductive performance and colostrum quality, and could also regulate the levels of reproductive hormone in umbilical cord serum.
Collapse
Affiliation(s)
- Chengkun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Qingtai Zhang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Qifang Yu
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Shengting Deng
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Shusong Wu
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (C.F.); (Q.Z.); (S.D.)
| |
Collapse
|
3
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
4
|
Wang YL, Hou YH, Ling ZJ, Zhao HL, Zheng XR, Zhang XD, Yin ZJ, Ding YY. RNA sequencing analysis of the longissimus dorsi to identify candidate genes underlying the intramuscular fat content in Anqing Six-end-white pigs. Anim Genet 2023; 54:315-327. [PMID: 36866648 DOI: 10.1111/age.13308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Intramuscular fat (IMF) is a significant marker for pork quality. The Anqing Six-end-white pig has the characteristics of high meat quality and IMF content. Owing to the influence of European commercial pigs and a late start in resource conservation, the IMF content within local populations varies between individuals. This study analyzed the longissimus dorsi transcriptome of purebred Anqing Six-end-white pigs with varying IMF content to recognize differentially expressed genes. We identified 1528 differentially expressed genes between the pigs with high (H) and low (L) IMF content. Based on these data, 1775 Gene Ontology terms were significantly enriched, including lipid metabolism, modification and storage, and regulation of lipid biosynthesis. Pathway analysis revealed 79 significantly enriched pathways, including the Peroxisome proliferator-activated receptor and mitogen-activated protein kinase signaling pathways. Moreover, gene set enrichment analysis indicated that the L group had increased the expression of genes related to ribosome function. Additionally, the protein-protein interaction network analyses revealed that VEGFA, KDR, LEP, IRS1, IGF1R, FLT1 and FLT4 were promising candidate genes associated with the IMF content. Our study identified the candidate genes and pathways involved in IMF deposition and lipid metabolism and provides data for developing local pig germplasm resources.
Collapse
Affiliation(s)
- Y L Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Y H Hou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Ling
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - H L Zhao
- Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - X R Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - X D Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Y Y Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
5
|
Detection of Selection Signatures in Anqing Six-End-White Pigs Based on Resequencing Data. Genes (Basel) 2022; 13:genes13122310. [PMID: 36553577 PMCID: PMC9777694 DOI: 10.3390/genes13122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
As a distinguished Chinese indigenous pig breed that exhibits disease resistance and high meat quality, the Anqing six-end-white (AQ) pig represents a valuable germplasm resource for improving the quality of the pig breeding industry. In this study, 24 AQ pigs that were distantly blood-related and 6 Asian Wild Boar (AWB) were selected for 10× deep-genome resequencing. The signatures of the selection were analyzed to explore the genetic basis of their germplasm characteristics and to identify excellent germplasm-related functional genes based on NGS data. A total of 49,289,052 SNPs and 6,186,123 indels were detected across the genome in 30 pigs. Most of the genetic variations were synonym mutations and existed in the intergenic region. We identified 275 selected regions (top 1%) harboring 85 genes by applying a crossover approach based on genetic differentiation (FST) and polymorphism levels (π ratio). Some genes were found to be positively selected in AQ pigs' breeding. The SMPD4 and DDX18 genes were involved in the immune response to pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV). The BCL6 and P2RX6 genes were involved in biological regulation of immune T cells and phagocytes. The SLC7A4 and SPACA4 genes were related to reproductive performance. The MSTN and HIF1A genes were related to fat deposition and muscle development. Moreover, 138 overlapping regions were detected in selected regions and ROH islands of AQ pigs. Additionally, we found that the QTLs with the most overlapping regions were related to back fat thickness, meat color, pH value, fatty acid content, immune cells, parasitic immunity, and bacterial immunity. Based on functional enrichment analysis and QTLs mapping, we conducted further research on the molecular genetic basis of germplasm traits (disease resistance and excellent meat quality). These results are a reliable resource for conserving germplasm resources and exploiting molecular markers of AQ pigs.
Collapse
|
6
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
7
|
Wu X, Zhou R, Wang Y, Zhang W, Zheng X, Zhao G, Zhang X, Yin Z, Ding Y. Genome‐wide scan for runs of homozygosity in Asian wild boars and Anqing six‐end‐white pigs. Anim Genet 2022; 53:867-871. [DOI: 10.1111/age.13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Ren Zhou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yuanlang Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Wei Zhang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences Hefei China
| | - Xianrui Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Guiying Zhao
- College of Animal Science and Technology Yunnan Agricultural University Kunming China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio‐Breeding, College of Animal Science and Technology Anhui Agricultural University Hefei Anhui China
| |
Collapse
|
8
|
Redox Biomarker Baseline Levels in Cattle Tissues and Their Relationships with Meat Quality. Antioxidants (Basel) 2021; 10:antiox10060958. [PMID: 34203695 PMCID: PMC8232099 DOI: 10.3390/antiox10060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cattle breeds or crossbreds with high productivity traits have been developed to meet a growing demand for food. When intensive farming practices are followed, animals face several challenges which can result in poor performance, compromised welfare and the reduced quality of their products. Our study aims to highlight the resting values of the physiological oxidative stress that three cattle breeds exhibit, and their potential relationship with meat quality. For this purpose, we determined the levels of five common redox biomarkers (glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), thiobarbituric reactive substances (TBARS) and protein carbonyls (CARBS)) in the tissues of three commonly used beef cattle breeds (Charolais (CHA), Limousin (LIM) and Simmental (SIM)) and their association with specific meat quality traits that depend on color, pH and texture. The results revealed that LIM cattle breed animals have elevated intrinsic antioxidant defense systems in comparison to CHA and SIM cattle breed animals. In addition, the meat quality parameters were associated with the redox biomarkers. We propose that the determination of specific antioxidant parameters in the blood might be used as potential biomarkers to predict meat quality. This would allow farmers to nutritionally intervene to improve the quality of their products.
Collapse
|
9
|
Li J, Zhang J, Yang Y, Zhu J, He W, Zhao Q, Tang C, Qin Y, Zhang J. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers. Food Res Int 2021; 146:110433. [PMID: 34119242 DOI: 10.1016/j.foodres.2021.110433] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023]
Abstract
Chinese black pork is preferred by consumers due to its unique organoleptic characteristics, which are closely related to lipids and volatiles. The primary aim of this study was to reveal key lipids and volatiles for the differentiation of Duroc × (Landrace × Yorkshire) (DLY), and Beijing Heiliu and Laiwu black (BHLB) pork. Here, lipid and volatile profiles were comprehensively characterized and compared using untargeted lipidomic and volatilomic analysis. The BHLB pork showed higher intramuscular fat content (p < 0.05). The content of total monounsaturated fatty acids, along with C16:1, C17:1, C18:1, and C20:1, was higher in BHLB pork compared with DLY pork (p < 0.05). Lipidomic analysis showed that DLY and BHLB pork significantly differed in lipids at the class and molecular levels. The BHLB pork had significantly more triglyceride and less lysophosphatidylcholine compared with DLY pork (p < 0.05). In positive and negative modes, 34 and 21 potential lipid markers, respectively, were selected for the discrimination of DLY and BHLB pork. In addition, volatilomic analysis showed that DLY and BHLB pork were well distinguished, and 13 volatiles were considered as potential discriminatory markers. Our findings provide a comprehensive lipidomic and volatilomic profiles characteristic of BHLB pork and will hopefully provide an important basis for the effective identification of Chinese black pork.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weizhao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Zhang W, Yang M, Zhou M, Wang Y, Wu X, Zhang X, Ding Y, Zhao G, Yin Z, Wang C. Identification of Signatures of Selection by Whole-Genome Resequencing of a Chinese Native Pig. Front Genet 2020; 11:566255. [PMID: 33093844 PMCID: PMC7527633 DOI: 10.3389/fgene.2020.566255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Identification of genomic signatures of selection that help reveal genetic mechanisms underlying traits in domesticated pigs is of importance. Anqing six-end-white pig (ASP), a representative of the native breeds in China, has many distinguishing phenotypic characteristics. To identify the genomic signatures of selection of the ASP, whole-genome sequencing of 20 ASPs produced 469.01 Gb of sequence data and more than 26 million single-nucleotide polymorphisms. Combining these data with the available whole genomes of 13 Chinese wild boars, 157 selected regions harboring 48 protein-coding genes were identified by applying the polymorphism levels (θπ) and genetic differentiation (FST) based cross approaches. The genes found to be positively selected in ASP are involved in crucial biological processes such as coat color (MC1R), salivary secretion (STATH), reproduction (SPIRE2, OSBP2, LIMK2, FANCA, and CABS1), olfactory transduction (OR5K4), and growth (NPY1R, NPY5R, and SELENOM). Our research increased the knowledge of ASP phenotype-related genes and help to improve our understanding of the underlying biological mechanisms and provide valuable genetic resources that enable effective use of pigs in agricultural production.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuanlang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xudong Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guiying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
11
|
Proteomic application in predicting food quality relating to animal welfare. A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Wang Y, Zhang W, Wu X, Wu C, Qian L, Wang L, Zhang X, Yang M, Li D, Ding J, Wang C, Yin Z, Ding Y. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing. Genome 2020; 63:203-214. [DOI: 10.1139/gen-2019-0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chinese indigenous pig and Western commercial pig breeds show different patterns of lipid metabolism, fat deposition, and fatty acid composition; for these reasons, they have become vitally important models of energy metabolism and obesity in humans. To compare the mechanisms underlying lipid metabolism between Yorkshire pigs (lean type) and Anqing six-end-white pigs (obese type), the liver transcriptomes of six castrated boars with a body weight of approximately 100 kg (three Yorkshire and three Anqing) were analyzed by RNA-seq. The total number of reads produced for each liver sample ranged from 47.05 to 62.6 million. Among 362 differentially expressed genes, 142 were up-regulated and 220 were down-regulated in Anqing six-end-white pigs. Based on these data, 79 GO terms were significantly enriched. The top 10 (the 10 with lowest corrected P-value) significantly enriched GO terms were identified, including lipid metabolic process and carboxylic acid metabolic process. Pathway analysis revealed three significantly enriched KEGG pathways including PPAR signaling pathway, steroid hormone biosynthesis, and retinol metabolism. Based on protein–protein interaction networks, multiple genes responsible for lipid metabolism were identified, such as PCK1, PPARA, and CYP7A1, and these were considered promising candidate genes that could affect porcine liver lipid metabolism and fat deposition. Our results provide abundant transcriptomic information that will be useful for animal breeding and biomedical research.
Collapse
Affiliation(s)
- Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Dengtao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|