1
|
Hoffman GR, Olson MG, Schoffstall AM, Estévez RF, Van den Eynde V, Gillman PK, Stabio ME. Classics in Chemical Neuroscience: Selegiline, Isocarboxazid, Phenelzine, and Tranylcypromine. ACS Chem Neurosci 2023; 14:4064-4075. [PMID: 37966854 DOI: 10.1021/acschemneuro.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
The discovery of monoamine oxidase inhibitors (MAOIs) in the 1950s marked a significant breakthrough in medicine, creating a powerful new category of drug: the antidepressant. In the years and decades that followed, MAOIs have been used in the treatment of several pathologies including Parkinson's disease, Alzheimer's disease, and various cancers and as anti-inflammatory agents. Despite once enjoying widespread use, MAOIs have dwindled in popularity due to side effects, food-drug interactions, and the introduction of other antidepressant drug classes such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). The recently published prescriber's guide for the use of MAOIs in treating depression has kindled a resurgence of their use in the clinical space. It is therefore timely to review key aspects of the four "classic" MAOIs: high-dose selegiline, isocarboxazid, phenelzine, and tranylcypromine. This review discusses their chemical synthesis, metabolism, pharmacology, adverse effects, and the history and importance of these drugs within the broader field of chemical neuroscience.
Collapse
Affiliation(s)
- Gavin R Hoffman
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Madeline G Olson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| | - Allen M Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Ryan F Estévez
- Department of Psychiatry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Tampa Bay Neurobehavior Institute, 6311 Sheldon Road, Tampa Bay, Florida 33615, United States
| | - Vincent Van den Eynde
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
- Department of Psychiatry, RadboudUMC, 6500 Nijmegen, The Netherlands
| | - Peter K Gillman
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Dormegny-Jeanjean LC, de Billy C, Mainberger O, Weibel S, Schorr B, Obrecht A, Landré L, Berna F, Causin JB, Blanc F, Danila V, Tomsa M, Pfleger G, Meyer C, Humbert I, Javelot H, Meyer G, Bertschy G, Foucher JR. Potential efficacy of dopaminergic antidepressants in treatment resistant anergic-anhedonic depression results of the chronic anergic-anhedonic depression open trial - CADOT. Front Psychiatry 2023; 14:1194090. [PMID: 37829759 PMCID: PMC10565009 DOI: 10.3389/fpsyt.2023.1194090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/02/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Among treatment-resistant depression (TRD), we identified anergic-anhedonic clinical presentations (TRAD) as putatively responsive to pro-dopaminergic strategies. Based on the literature, non-selective monoamine oxidase inhibitors (MAOI) and dopamine D2 receptor agonists (D2RAG) were sequentially introduced, frequently under the coverage of a mood stabilizer. This two-step therapeutic strategy will be referred to as the Dopaminergic Antidepressant Therapy Algorithm (DATA). We describe the short and long-term outcomes of TRAD managed according to DATA guidelines. Method Out of 52 outpatients with TRAD treated with DATA in a single expert center, 48 were included in the analysis [severity - QIDS (Quick Inventory of Depressive Symptomatology) = 16 ± 3; episode duration = 4.1 ± 2.7 years; Thase and Rush resistance stage = 2.9 ± 0.6; functioning - GAF (Global Assessment of Functioning) = 41 ± 8]. These were followed-up for a median (1st - 3rd quartile) of 4 (1-9) months before being prescribed the first dopaminergic treatment and remitters were followed up 21 (11-33) months after remission. Results At the end of DATA step 1, 25 patients were in remission (QIDS <6; 52% [38-66%]). After DATA step 2, 37 patients were in remission (77% [65-89%]) to whom 5 patients with a QIDS score = 6 could be added (88% [78-97%]). Many of these patients felt subjectively remitted (GAF = 74 ± 10). There was a significant benefit to combining MAOI with D2RAG which was maintained for at least 18 months in 30 patients (79% [62-95%]). Conclusion These results support TRAD sensitivity to pro-dopaminergic interventions. However, some clinical heterogeneities remain in our sample and suggest some improvement in the description of dopamine-sensitive form(s).
Collapse
Affiliation(s)
- Ludovic Christophe Dormegny-Jeanjean
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Clément de Billy
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Olivier Mainberger
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Sébastien Weibel
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- INSERM UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, Strasbourg, France
| | - Benoit Schorr
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- INSERM UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, Strasbourg, France
- Geriatrics Department and Expert Center for Neurocognitive Disorders, University Hospital of Strasbourg, Strasbourg, France
| | - Alexandre Obrecht
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
| | - Lionel Landré
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Fabrice Berna
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- INSERM UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, Strasbourg, France
| | - Jean-Baptiste Causin
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- INSERM UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, Strasbourg, France
| | - Frederic Blanc
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
- Geriatrics Department and Expert Center for Neurocognitive Disorders, University Hospital of Strasbourg, Strasbourg, France
| | - Vlad Danila
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychiatry “Pole 8/9”, Rouffach Psychiatric Hospital, Rouffach, France
| | - Mihaela Tomsa
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychiatry “Pole 8/9”, Rouffach Psychiatric Hospital, Rouffach, France
| | - Geraldine Pfleger
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Integrated Psychiatric Care, Centre Hospitalier d’Erstein, Erstein, France
| | - Camille Meyer
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Ilia Humbert
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Hervé Javelot
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Expert center in Psychopharmacology, Etablissement public de santé Alsace nord (EPSAN), Bischwiller, France
| | - Guillaume Meyer
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychopharmacology, Centre Hospitalier d’Erstein, Lingolsheim, France
| | - Gilles Bertschy
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
- INSERM UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, Strasbourg, France
| | - Jack Rene Foucher
- Treatment resistant depression expert center of Alsace (CEDRA), Strasbourg-Rouffach-Erstein-Brumath, Rouffach, France
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, Strasbourg, France
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
- Department of Psychiatry and Mental Health – University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. Mol Cell Neurosci 2023; 125:103842. [PMID: 36924917 PMCID: PMC10247460 DOI: 10.1016/j.mcn.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Katelyn A Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nate McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxuan Chang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Jing Li
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric Arellano
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, VA, 24060, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526866. [PMID: 36778412 PMCID: PMC9915563 DOI: 10.1101/2023.02.02.526866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
|
5
|
Nouraliei M, Javadian H, Mehdizadeh K, Sheibanian N, Douk AS, Mohamadzade F, Osouleddini N. Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Jiang K, Huang C, Liu F, Zheng J, Ou J, Zhao D, Ou S. Origin and Fate of Acrolein in Foods. Foods 2022; 11:foods11131976. [PMID: 35804791 PMCID: PMC9266280 DOI: 10.3390/foods11131976] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Acrolein is a highly toxic agent that may promote the occurrence and development of various diseases. Acrolein is pervasive in all kinds of foods, and dietary intake is one of the main routes of human exposure to acrolein. Considering that acrolein is substantially eliminated after its formation during food processing and re-exposed in the human body after ingestion and metabolism, the origin and fate of acrolein must be traced in food. Focusing on molecular mechanisms, this review introduces the formation of acrolein in food and summarises both in vitro and in vivo fates of acrolein based on its interactions with small molecules and biomacromolecules. Future investigation of acrolein from different perspectives is also discussed.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China;
| | - Danyue Zhao
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
7
|
Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG. Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021; 26:molecules26123724. [PMID: 34207264 PMCID: PMC8234097 DOI: 10.3390/molecules26123724] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/03/2023] Open
Abstract
Despite not being utilized as considerably as other antidepressants in the therapy of depression, the monoamine oxidase inhibitors (MAOIs) proceed to hold a place in neurodegeneration and to have a somewhat broad spectrum in respect of the treatment of neurological and psychiatric conditions. Preclinical and clinical studies on MAOIs have been developing in recent times, especially on account of rousing discoveries manifesting that these drugs possess neuroprotective activities. The altered brain levels of monoamine neurotransmitters due to monoamine oxidase (MAO) are directly associated with various neuropsychiatric conditions like Alzheimer’s disease (AD). Activated MAO induces the amyloid-beta (Aβ) deposition via abnormal cleavage of the amyloid precursor protein (APP). Additionally, activated MAO contributes to the generation of neurofibrillary tangles and cognitive impairment due to neuronal loss. No matter the attention of researchers on the participation of MAOIs in neuroprotection has been on monoamine oxidase-B (MAO-B) inhibitors, there is a developing frame of proof indicating that monoamine oxidase-A (MAO-A) inhibitors may also play a role in neuroprotection. The therapeutic potential of MAOIs alongside the complete understanding of the enzyme’s physiology may lead to the future advancement of these drugs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
- Correspondence: (T.B.); (S.B.)
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
8
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
9
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 PMCID: PMC7270331 DOI: 10.3389/fnins.2020.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner, ;
| |
Collapse
|
10
|
Baker G, Matveychuk D, MacKenzie EM, Holt A, Wang Y, Kar S. Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chem Biol Interact 2019; 304:139-147. [PMID: 30857888 DOI: 10.1016/j.cbi.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Phenelzine (β-phenylethylhydrazine) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. It possesses a number of important pharmacological properties which may alter the effects of oxidative stress. After conducting a comprehensive literature search, the authors of this review paper aim to provide an overview and discussion of the mechanisms by which phenelzine may attenuate oxidative stress. It inhibits γ-aminobutyric acid (GABA) transaminase, resulting in elevated brain GABA levels, inhibits both MAO and primary amine oxidase and, due to its hydrazine-containing structure, reacts chemically to sequester a number of reactive aldehydes (e.g. acrolein and 4-hydroxy-2-nonenal) proposed to be implicated in oxidative stress in a number of neurodegenerative disorders. Phenelzine is unusual in that it is both an inhibitor of and a substrate for MAO, the latter action producing at least one active metabolite, β-phenylethylidenehydrazine (PEH). This metabolite inhibits GABA transaminase, is a very weak inhibitor of MAO but a strong inhibitor of primary amine oxidase, and sequesters aldehydes. Phenelzine may ameliorate the effects of oxidative stress by reducing formation of reactive metabolites (aldehydes, hydrogen peroxide, ammonia/ammonia derivatives) produced by the interaction of MAO with biogenic amines, by sequestering various other reactive aldehydes and by inhibiting primary amine oxidase. In PC12 cells treated with the neurotoxin MPP+, phenelzine has been reported to reduce several adverse effects of MPP+. It has also been reported to reduce lipid peroxidative damage induced in plasma and platelet proteins by peroxynitrite. In animal models, phenelzine has a neuroprotective effect in global ischemia and in cortical impact traumatic brain injury. Recent studies reported in the literature on the possible involvement of acrolein in spinal cord injury and multiple sclerosis indicate that phenelzine can attenuate adverse effects of acrolein in these models. Results from studies in our laboratories on effects of phenelzine and PEH on primary amine oxidase (which catalyzes formation of toxic aldehydes and is overexpressed in Alzheimer's disease), on sequestration of the toxic aldehyde acrolein, and on reduction of acrolein-induced toxicity in mouse cortical neurons are also reported.
Collapse
Affiliation(s)
- Glen Baker
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Dmitriy Matveychuk
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Erin M MacKenzie
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Andrew Holt
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Yanlin Wang
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| | - Satyabrata Kar
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Potter LE, Doolen S, Mifflin K, Tenorio G, Baker G, Taylor BK, Kerr BJ. Antinociceptive Effects of the Antidepressant Phenelzine are Mediated by Context-Dependent Inhibition of Neuronal Responses in the Dorsal Horn. Neuroscience 2018; 383:205-215. [PMID: 29752984 DOI: 10.1016/j.neuroscience.2018.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/08/2023]
Abstract
The putative strong anti-nociceptive properties of the antidepressant phenelzine (PLZ) have not been widely explored as a treatment for pain. Antinociceptive effects of PLZ were identified in the formalin model of tonic pain (Mifflin et al., 2016) and in allodynia associated with experimental autoimmune encephalomyelitis, (EAE) a mouse model of multiple sclerosis (Potter et al., 2016). Here, we further clarify the specific types of stimuli and contexts in which PLZ modulates nociceptive sensitivity. Our findings indicate that PLZ selectively inhibits ongoing inflammatory pain while sparing transient reflexive and acute nociception. We also investigated the cellular mechanisms of action of PLZ in the dorsal horn, and as expected of a monoamine-oxidase inhibitor, PLZ increased serotonin (5HT) immunoreactivity. We next used two approaches to test the hypothesis that PLZ inhibits the activation of spinal nociresponsive neurons. First, we evaluated the formalin-evoked protein expression of the immediate early gene, c-fos. PLZ reduced Fos expression in the superficial dorsal horn. Second, we evaluated the effects of PLZ on intracellular calcium responses to superfusion of glutamate (0.3-1.0 mM) in an ex vivo lumbar spinal cord slice preparation. Superfusion with PLZ (100-300 μM) reduced 1 mM glutamate-evoked calcium responses. This was blocked by pretreatment with the 5HT1A-receptor antagonist WAY-100,635, but not the alpha-2 adrenergic antagonist idazoxan. We conclude that PLZ exerts antinociceptive effects through a 5-HT/5HT1AR-dependent inhibition of neuronal responses within nociceptive circuits of the dorsal horn.
Collapse
Affiliation(s)
- Liam E Potter
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Suzanne Doolen
- Department of Physiology and the Center for Analgesia Research Excellence, University of Kentucky, Lexington, KY 40536, USA
| | - Katherine Mifflin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychology, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychiatry (NRU), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Bradley K Taylor
- Department of Physiology and the Center for Analgesia Research Excellence, University of Kentucky, Lexington, KY 40536, USA
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
12
|
Baker GB, Matveychuk D, MacKenzie EM, Dursun SM, Mousseau DD. Monoamine Oxidase Inhibitors and Neuroprotective Mechanisms. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20121030014051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Glen B. Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Erin M. MacKenzie
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Matveychuk D, Dursun SM, Wood PL, Baker GB. Reactive Aldehydes and Neurodegenerative Disorders. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.19691231040000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul L. Wood
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Glen B. Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2427618. [PMID: 26881018 PMCID: PMC4736399 DOI: 10.1155/2016/2427618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Resveratrol has been reported to inhibit monoamine oxidases (MAO). Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO) in peripheral organs, such as semicarbazide-sensitive AO (SSAO), known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid) behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [(14)C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.
Collapse
|
15
|
Benson CA, Wong G, Tenorio G, Baker GB, Kerr BJ. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav Brain Res 2013; 252:302-11. [DOI: 10.1016/j.bbr.2013.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
|
16
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Monoamine oxidase inhibitors have been available for more than 50 years, initially developed as antidepressants but currently used in a variety of psychiatric and neurological conditions. There has been a recent surge of interest in monoamine oxidase inhibitors because of their reported neuroprotective and/or neurorescue properties. Interestingly, it seems that often these properties are independent of their ability to inhibit monoamine oxidase. This review article presents an overview of the neuroprotective/neurorescue properties of these multifaceted drugs and focuses on phenelzine, (-)-deprenyl, rasagiline, ladostigil, tranylcypromine, moclobemide, and clorgyline and their possible neuroprotective mechanisms.
Collapse
|
18
|
The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake. J Neural Transm (Vienna) 2012; 120:997-1003. [DOI: 10.1007/s00702-012-0951-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
|
19
|
Musgrave T, Benson C, Wong G, Browne I, Tenorio G, Rauw G, Baker GB, Kerr BJ. The MAO inhibitor phenelzine improves functional outcomes in mice with experimental autoimmune encephalomyelitis (EAE). Brain Behav Immun 2011; 25:1677-88. [PMID: 21723939 DOI: 10.1016/j.bbi.2011.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and the animal model, experimental autoimmune encephalomyelitis (EAE), are both accompanied by motor and non-motor symptoms. Pathological changes in the activities of key neurotransmitters likely underlie many of these symptoms. We have previously described disturbances in the levels of 5-hydroxytryptamine (5-HT/serotonin), noradrenaline (NE) and γ-aminobutyric acid (GABA) in a mouse model of EAE. The potential therapeutic effect of a drug that targets these three neurotransmitters, the antidepressant and anti-panic drug phenelzine (PLZ), was assessed in mice with MOG(35-55) induced EAE. The neurotransmitter content of EAE and control tissue after PLZ administration was first evaluated by HPLC. The ability of PLZ treatment to modulate EAE disease course and clinical signs was then assessed. Daily PLZ treatment, starting seven days after disease induction, delayed EAE onset, reduced disease severity in the chronic phase and was associated with substantial improvements in exploratory behavior and a novel measure of sickness and/or depression. Upon completion of the experiment, PLZ's effects on histopathological markers of the disease were examined. No differences were observed in T cell infiltration, microglia/macrophage reactivity, demyelination or axonal injury in PLZ-treated spinal cords. However, EAE mice treated with PLZ showed a normalization of 5-HT levels in the ventral horn of the spinal cord that might account for the improvements in behavioral outcomes. These results demonstrate the therapeutic potential of MAO inhibitors such as PLZ in MS. Additionally, the behavioral changes observed in EAE mice indicate that alterations in non-motor or 'affective' measures may be valuable to consider in addition to traditional measures of gross locomotor function.
Collapse
Affiliation(s)
- Travis Musgrave
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|