1
|
Zhang J, Feng W, Ren L. Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery. Microorganisms 2024; 12:2248. [PMID: 39597637 PMCID: PMC11596075 DOI: 10.3390/microorganisms12112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Heavy crude oil (HCO) and extra-heavy crude oil (EHCO) with high viscosity and density pose enormous challenges to the exploitation of oil reserves. While bacteria are increasingly used in biocatalytic upgrading of HCO and EHCO, less attention has been paid to the potential of fungi. The aim of this study was to ascertain the role of fungal extracellular enzymes from Aspergillus spp. In the biodegradation of EHCO and their application potential for enhanced oil recovery. A. terreus HJ2 and A. nidulans HJ4 with the ability to biodegrade HCO were previously isolated from bitumen enrichment cultures. Both strains grew well on EHCO agar plates supplemented with a small amount of soluble starch (0.2%) and yeast extract (0.3%). Extracellular enzymes from each strain separately, as well as mixtures of the enzymes, exhibited EHCO degradation activity, leading to redistribution of hydrocarbons with substantial formation of biogases and organic acids in a 7-day period. Enzymatic degradation resulted in decreased contents of resins and asphaltenes, accompanied by increased contents of saturates and aromatics. Gas chromatography-mass spectrometry revealed distinct redistribution patterns of n-alkane in the biotreated oil. Enzymatic degradation additionally caused considerable reduction in oil viscosity (by 12.7%) and heavy metal concentrations (Ni, by 44.1%; Fe, by 54.0%; V, by 31.6%). The results provide empirical evidence for the application potential of fungal extracellular enzymes from Aspergillus spp. in EHCO recovery and biocatalytic upgrading of EHCO.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Ecology and Environment, Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830046, China;
| | - Wendi Feng
- College of Ecology and Environment, Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830046, China;
| | - Lu Ren
- Xinjiang Oilfield Company, PetroChina, Karamay 834000, China;
| |
Collapse
|
2
|
Jiménez Vizcarra MJ, Mahendra S, Wang M. A Co-Immobilized Enzyme-Mediator System for Facilitating Manganese Peroxidase Catalysis in Solution Free of Divalent Manganese Ions. BIORESOURCE TECHNOLOGY 2023; 390:129897. [PMID: 37863333 DOI: 10.1016/j.biortech.2023.129897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Manganese peroxidase (MnP) offers significant potential in various environmental and industrial applications; however, its reliance on Mn2+ ions for electron shuttling limits its use in Mn2+-deficient systems. Herein, a novel approach is presented to address this limitation by co-immobilizing MnP and Mn2+ in silica gels. These gels were synthesized following the standard sol-gel method and found to effectively immobilize Mn2+ ions, primarily through electrostatic interactions. The MnP co-immobilized with Mn2+ ions in the silica gel exhibited 4-5 times higher activity than the MnP immobilized alone in activity assays, and generated Mn3+ within the gel, indicating the immobilized Mn2+ ions remain capable of shuttling electrons to the co-immobilized MnP. In decolorization tests with two organic dyes, the co-immobilized system also outperformed the MnP immobilized without Mn2+ ions, resulting in 2-4 times higher dye removals. This study will enable a broader application of MnP enzymes in sustainable environmental remediation and industrial catalysis.
Collapse
Affiliation(s)
- María J Jiménez Vizcarra
- Department of Civil and Environmental Engineering, University of Pittsburgh, 709 Benedum Hall, 3700 O'Hara St., Pittsburgh, PA 15261, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, 709 Benedum Hall, 3700 O'Hara St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Zhang J, Gao H, Xue Q. Potential applications of microbial enhanced oil recovery to heavy oil. Crit Rev Biotechnol 2020; 40:459-474. [PMID: 32166983 DOI: 10.1080/07388551.2020.1739618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heavy oil accounts for around one-third of total global oil and gas resources. The progressive depletion of conventional energy reserves has led to an increased emphasis on the efficient exploitation of heavy oil and bitumen reserves in order to meet energy demand. Therefore, it is imperative to develop new technologies for heavy oil upgrading and recovery. Biologically-based technology that involves using microorganisms or their metabolites to mobilize heavy oil trapped in reservoir rocks can make a significant contribution to the recovery of heavy oils. Here, the results of laboratory experiments and field trials applying microbial enhanced oil recovery (MEOR) technologies are summarized. This review provides an overview of the basic concepts, mechanisms, advantages, problems, and trends in MEOR, and demonstrates the credibility of MEOR methods for applications in enhanced heavy oil recovery and the petroleum refining processes. This technology is cost-effective and environmentally-friendly. The feasibility of MEOR technologies for heavier oil has not yet been fully realized due to the perceived process complexity and a lack of sufficient laboratory research and field test data. However, novel developments such as enzyme-enhanced oil recovery continues to improve MEOR methods.HighlightsHeavy oil represents the largest known potentially-recoverable petroleum energy resource.Novel biotechnological processes are needed to recover or upgrade heavy oil.Microbial technologies have great potential for heavy oil recovery.Microorganisms can produce metabolic byproducts to mobilize oil trapped in reservoirs.More technological research is needed to develop microbial enhanced oil recovery.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, China.,Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
| | - Hui Gao
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| |
Collapse
|
5
|
Abstract
Bio-desulfurization is an efficient technology for removing recalcitrant sulfur derivatives from liquid fuel oil in environmentally friendly experimental conditions. In this context, the development of heterogeneous bio-nanocatalysts is of great relevance to improve the performance of the process. Here we report that lignin nanoparticles functionalized with concanavalin A are a renewable and efficient platform for the layer-by-layer immobilization of horseradish peroxidase. The novel bio-nanocatalysts were applied for the oxidation of dibenzothiophene as a well-recognized model of the recalcitrant sulfur derivative. The reactions were performed with hydrogen peroxide as a green primary oxidant in the biphasic system PBS/n-hexane at 45 °C and room pressure, the highest conversion of the substrate occurring in the presence of cationic polyelectrolyte layer and hydroxy-benzotriazole as a low molecular weight redox mediator. The catalytic activity was retained for more transformations highlighting the beneficial effect of the support in the reusability of the heterogeneous system.
Collapse
|
6
|
Davoodi SM, Miri S, Taheran M, Brar SK, Galvez-Cloutier R, Martel R. Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2054-2067. [PMID: 31904944 DOI: 10.1021/acs.est.9b00906] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is a general understanding that unconventional oil is petroleum-extracted and processed into petroleum products using unconventional means. The recent growth in the United States shale oil production and the lack of refineries in Canada built for heavy crude processes have resulted in a significant increase in U.S imports of unconventional oil since 2018. This has increased the risk of incidents and catastrophic emergencies during the transportation of unconventional oils using transmission pipelines and train rails. A great deal of effort has been made to address the remediation of contaminated soil/sediment following the traditional oil spills. However, spill response and cleanup techniques (e.g., oil recuperation, soil-sediment-water treatments) showed slow and inefficient performance when it came to unconventional oil, bringing larger associated environmental impacts in need of investigation. To the best of our knowledge, there is no coherent review available on the biodegradability of unconventional oil, including Dilbit and Bakken oil. Hence, in view of the insufficient information and contrasting results obtained on the remediation of petroleum, this review is an attempt to fill the gap by presenting the collective understanding and critical analysis of the literature on bioremediation of products from the oil sand and shale (e.g., Dilbit and Bakken oil). This can help evaluate the different aspects of hydrocarbon biodegradation and identify the knowledge gaps in the literature.
Collapse
Affiliation(s)
- Seyyed Mohammadreza Davoodi
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | - Saba Miri
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | - Mehrdad Taheran
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
| | - Satinder Kaur Brar
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | | | - Richard Martel
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
| |
Collapse
|
7
|
Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03800-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Sahare P, Ayala M, Vazquez-Duhalt R, Pal U, Loni A, Canham LT, Osorio I, Agarwal V. Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles. NANOSCALE RESEARCH LETTERS 2016; 11:417. [PMID: 27650291 PMCID: PMC5030200 DOI: 10.1186/s11671-016-1605-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The study of the stability enhancement of a peroxidase immobilized onto mesoporous silicon/silica microparticles is presented. Peroxidases tend to get inactivated in the presence of hydrogen peroxide, their essential co-substrate, following an auto-inactivation mechanism. In order to minimize this inactivation, a second protein was co-immobilized to act as an electron acceptor and thus increase the stability against self-oxidation of peroxidase. Two heme proteins were immobilized into the microparticles: a fungal commercial peroxidase and cytochrome c from equine heart. Two types of biocatalysts were prepared: one with only covalently immobilized peroxidase (one-protein system) and another based on covalent co-immobilization of peroxidase and cytochrome c (two-protein system), both immobilized by using carbodiimide chemistry. The amount of immobilized protein was estimated spectrophotometrically, and the characterization of the biocatalyst support matrix was performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared (FTIR) analyses. Stability studies show that co-immobilization with the two-protein system enhances the oxidative stability of peroxidase almost four times with respect to the one-protein system. Thermal stability analysis shows that the immobilization of peroxidase in derivatized porous silicon microparticles does not protect the protein from thermal denaturation, whereas biogenic silica microparticles confer significant thermal stabilization.
Collapse
Affiliation(s)
- P. Sahare
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autónoma del Estado de México, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 Mexico
| | - M. Ayala
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - R. Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de Mexico, Km. 107, Carretera Tijuana-Ensenada, Apdo. Postal 14, CP 22800 Ensenada, Baja California Mexico
| | - U. Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - A. Loni
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ UK
| | - L. T. Canham
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ UK
| | - I. Osorio
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - V. Agarwal
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autónoma del Estado de México, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 Mexico
| |
Collapse
|
9
|
Abstract
An artificial peroxidase with thermal tolerance and high catalytic activity has been successfully prepared by mutagenesis of an electron transfer protein, cytochrome c552 from Thermus thermophilus. The mutant enzymes were rationally designed based on the general peroxidase mechanism and spectroscopic analyses of an active intermediate formed in the catalytic reaction. Stopped flow UV-vis spectroscopy and EPR spectroscopy with a rapid freezing sample technique revealed that the initial double mutant, V49D/M69A, which was designed to reproduce the peroxidase mechanism, formed an active oxo-ferryl heme intermediate with a protein radical predominantly localized on Tyr45 during the catalytic reaction. The magnetic power saturation measurement obtained from EPR studies showed little interaction between the oxo-ferryl heme and the tyrosyl radical. Kinetics studies indicated that the isolated oxo-ferryl heme component in the active intermediate was a possible cause of heme degradation during the reaction with H2O2. Strong interaction between the oxo-ferryl heme and the radical was achieved by replacing Tyr45 with tryptophan (resulting in the Y45W/V49D/M69A mutant), which was similar to a tryptophanyl radical found in active intermediates of some catalase-peroxidases. Compared to the protein radical intermediates of V49D/M69A mutant, those of the Y45W/V49D/M69A mutant showed higher reactivity to an organic substrate than to H2O2. The Y45W/V49D/M69A mutant exhibited improved peroxidase activity and thermal tolerance.
Collapse
Affiliation(s)
- Y Watanabe
- Research Center of Materials Science, Nagoya University, Nagoya, Japan
| | - H Nakajima
- Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
10
|
Raliski BK, Howard CA, Young DD. Site-Specific Protein Immobilization Using Unnatural Amino Acids. Bioconjug Chem 2014; 25:1916-20. [DOI: 10.1021/bc500443h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Benjamin K. Raliski
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Christina A. Howard
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Douglas D. Young
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
11
|
Campbell AS, Dong C, Meng F, Hardinger J, Perhinschi G, Wu N, Dinu CZ. Enzyme catalytic efficiency: a function of bio-nano interface reactions. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5393-403. [PMID: 24666280 DOI: 10.1021/am500773g] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biocatalyst immobilization onto carbon-based nanosupports has been implemented in a variety of applications ranging from biosensing to biotransformation and from decontamination to energy storage. However, retaining enzyme functionality at carbon-based nanosupports was challenged by the non-specific attachment of the enzyme as well as by the enzyme-enzyme interactions at this interface shown to lead to loss of enzyme activity. Herein, we present a systematic study of the interplay reactions that take place upon immobilization of three pure enzymes namely soybean peroxidase, chloroperoxidase, and glucose oxidase at carbon-based nanosupport interfaces. The immobilization conditions involved both single and multipoint single-type enzyme attachment onto single and multi-walled carbon nanotubes and graphene oxide nanomaterials with properties determined by Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Our analysis showed that the different surface properties of the enzymes as determined by their molecular mapping and size work synergistically with the carbon-based nanosupports physico-chemical properties (i.e., surface chemistry, charge and aspect ratios) to influence enzyme catalytic behavior and activity at nanointerfaces. Knowledge gained from these studies can be used to optimize enzyme-nanosupport symbiotic reactions to provide robust enzyme-based systems with optimum functionality to be used for fermentation, biosensors, or biofuel applications.
Collapse
Affiliation(s)
- Alan S Campbell
- Department of Chemical Engineering and ‡Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Ryabov AD. Green Challenges of Catalysis via Iron(IV)oxo and Iron(V)oxo Species. ADVANCES IN INORGANIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-404582-8.00004-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Potential applications of bioprocess technology in petroleum industry. Biodegradation 2012; 23:865-80. [DOI: 10.1007/s10532-012-9577-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|
14
|
Águila S, Vazquez-Duhalt R, Covarrubias C, Pecchi G, Alderete JB. Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Nakajima H, Osami S, Watanabe Y. Molecular Design of Heme Proteins for Future Application. CATALYSIS SURVEYS FROM ASIA 2011. [DOI: 10.1007/s10563-011-9117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Nakajima H, Ramanathan K, Kawaba N, Watanabe Y. Rational engineering of Thermus thermophilus cytochrome c552 to a thermally tolerant artificial peroxidase. Dalton Trans 2010; 39:3105-14. [DOI: 10.1039/b924365h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Nakajima H, Ichikawa Y, Satake Y, Takatani N, Manna SK, Rajbongshi J, Mazumdar S, Watanabe Y. Engineering ofThermus thermophilusCytochromec552: Thermally Tolerant Artificial Peroxidase*. Chembiochem 2008; 9:2954-7. [DOI: 10.1002/cbic.200800599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|