1
|
Yu R, Sun R, Jiang N, Zhang B, Wang C, Liu Q, Li Z, Wang X. The Antibacterial Activity and Mechanisms of a Mixed Bio-Preservative on the Bacillus Stains in Crab Roe Sauce. Foods 2025; 14:525. [PMID: 39942118 PMCID: PMC11817466 DOI: 10.3390/foods14030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Crab roe sauce (CRS) is prone to spoilage due to microbial contamination. Therefore, this study aimed to investigate the inhibitory effects and mechanisms of a mixed bio-preservative (0.025% ε-polylysine hydrochloride (ε-PL) + 0.01% nisin (NS) + 0.01% tea polyphenols (TPs)) on the specific spoilage bacteria (SSB) in CRS. First, the SSB in CRS were isolated and identified by 16S rRNA sequencing. Two isolates were selected as representative strains based on their enzymatic spoilage potential and spoilage capability in CRS. By comparing the inhibition zones, ε-PL, NS, and TPs were selected from five conventional bio-preservatives (ε-PL, NS, TPs, grape seed extract (GSE), and rosemary extract (RE)) to prepare the mixed bio-preservative. The results showed that the minimum inhibitory concentration (MIC) of the mixed bio-preservative against Bacillus pumilus and Bacillus subtilis was 56.3 µg/mL. The growth curves and cell viability tests revealed that the mixed bio-preservative reduced the viability of both strains. The conductivity, alkaline phosphatase activity, and nucleic acid and soluble protein leakage indicated that the mixed bio-preservative disrupted the integrity of the cell walls and membranes of the two isolates in a concentration-dependent manner. Scanning electron microscopy further confirmed the damage to the cell membranes of the two isolates by the mixed bio-preservative. Overall, the mixed bio-preservative exhibited excellently inhibitory effects on the SSB and could be a promising method for the preservation of CRS.
Collapse
Affiliation(s)
- Rongrong Yu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhiqiang Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xingna Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (C.W.); (Q.L.); (Z.L.); (X.W.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Shah H, Zhang C, Khan S, Patil PJ, Li W, Xu Y, Ali A, Liang E, Li X. Comprehensive Insights into Microbial Lipases: Unveiling Structural Dynamics, Catalytic Mechanism, and Versatile Applications. Curr Microbiol 2024; 81:394. [PMID: 39375258 DOI: 10.1007/s00284-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency. The review delves into ML sources, spanning fungi, yeasts, bacteria, and actinomycetes, followed by a discussion on classification and characterization. Emphasizing the scattered findings in the literature, the paper consolidates the latest information on ML applications across various industries, from food and pharmaceuticals to biofuel production and the paper and pulp industry. The review captures the dynamic landscape of ML research, emphasizing their structure-function relationships and practical implications across diverse sectors.
Collapse
Affiliation(s)
- Haroon Shah
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Chengnan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
| | - Sohail Khan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Prasanna Jagannath Patil
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Akhtiar Ali
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Erhong Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China.
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China.
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China.
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China.
| |
Collapse
|
4
|
Saravanakumar S, Prabakaran NN, Ashokkumar R, Jamuna S. Unlocking the Gut's Treasure: Lipase-Producing Bacillus subtilis Probiotic from the Intestine of Microstomus kitt (Lemon sole). Appl Biochem Biotechnol 2024; 196:4273-4286. [PMID: 37943408 DOI: 10.1007/s12010-023-04749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The main objective of this research was to identify potential probiotic candidates belonging to the Bacillus species that could demonstrate tolerance to bile salt and acidic conditions. The study focused on isolating Bacillus strains from the intestine of marine fish-Microstomus kitt. The isolation process involved the use of selective MRS media through the pour plate method. After 24 h, one particular isolate was identified based on its morphological and biochemical traits as Bacillus species. To confirm the identity, molecular characterization of the 16S RNA from the isolated strain was performed, and the sequence analysis verified it as Bacillus subtilis strain ACL_BS 001. With the molecular confirmation, the next step was to assess the probiotic characteristics of this B. subtilis strain. Various tests were conducted to evaluate its acid/pH tolerance, NaCl tolerance, and bile salt tolerance. The results indicated that B. subtilis exhibited high viability percentages even under acidic pH, in the presence of 1.5% bile salt, and at high salt concentrations. Subsequently, we investigated the strain's ability to produce lipase, an important enzyme with potential industrial applications. B. subtilis was grown in MRS agar amended with olive oil as a lipase substrate. After incubation, the presence of lipase activity was confirmed, and the enzymatic assay revealed a significant lipase enzyme activity of 100.23 µmoles/ml of the sample. In conclusion, the study successfully isolated and identified B. subtilis from the intestine of Microstomus kitt, and the strain exhibited promising probiotic characteristics, including resistance to bile salt and acidic conditions. Furthermore, the strain was found to produce lipase, which opens up possibilities for future research focusing on isolating and purifying the lipase from this potential probiotic B. subtilis strain.
Collapse
Affiliation(s)
| | | | - Rathinavel Ashokkumar
- Centre for Laboratory Animal Technology and Animal Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - S Jamuna
- Affyclone Laboratories Pvt Ltd, Chrompet, Chennai, Tamil Nadu, 600044, India.
| |
Collapse
|
5
|
Khodakarami Fard Z, Shirazinejad A, Mohammadi M, Hashemi SMB. Molecular Cloning of the Extracellular Lipases of Bacillus Amyloliquefaciens Isolated from Agrifood Wastes. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3797. [PMID: 39220339 PMCID: PMC11364930 DOI: 10.30498/ijb.2024.417315.3797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 09/04/2024]
Abstract
Background The lipase enzyme (EC: 3.1.1.3) is one of the most important catalysts in food, dairy, detergent, and textile industries. Objective This study was performed to identify, isolate and characterize of lipase producing bacterial strain from agrifood wastes and to identify and characterize of their lipase genes. Materials and Methods In the present study, two lipase-producing isolates were identified from the effluent of Golbahar meat products and Soveyda vegetable oil factories using in silico and in vitro approaches. Results The results of morphological, biochemical, and molecular characterizations showed that both lipase-producing isolates belong to the Bacillus amyloliquefaciens species. Phylogenetic analysis confirmed the results of phenotypic, biochemical, and molecular characterizations. The results showed differences between LipA and LipB in the Golbahar and Soveyda isolates. Three different amino acids (residues 14, 100, and 165) were observed in LipA and one different amino acid (residue 102) was detected in LipB extracellular lipases. The protein molecular weight of the two extracted lipases ranged from 20 to 25 kDa. The identified extracellular lipases also had different physicochemical features. The maximum lipase activity of the Golbahar and Soveyda isolates was observed at 45 °C and at the pH of 8, but the Golbahar isolates exhibited higher lipase activity compared to the Soveyda isolates. The Golbahar and Soveyda isolates exhibited different activities in the presence of some ions, inhibitors, denaturing agents, and organic solvents and the Golbahar isolates showed better lipase activity than the Soveyda isolates. Conclusions In this study, two extracellular lipase-producing isolates of B. amyloliquefaciens were identified from different food industries, and their characteristics were investigated. The results of various investigations showed that the lipases produced by the Golbahar isolate have better characteristics than the lipases of the Soveyda isolate. The Golbahar lipases have a suitable temperature and pH activity range and maintain their activity in the presence of some ions, inhibitors, denaturing agents, and organic solvents. After further investigation, the Golbahar isolate lipase can be used in various industries. In addition, this lipase can be used enzyme engineering processes and its activity can be arbitrarily changed by targeted mutations. The results of this study can increase our knowledge of extracellular lipases and may turn out to have industrial applications.
Collapse
Affiliation(s)
- Zahra Khodakarami Fard
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Alireza Shirazinejad
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mohsen Mohammadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
6
|
Kaur M, Kumar R, Katoch P, Gupta R. Purification and characterization of extracellular lipase from a thermotolerant strain: Bacillus subtilis TTP-06. 3 Biotech 2023; 13:343. [PMID: 37711229 PMCID: PMC10497478 DOI: 10.1007/s13205-023-03717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
In current study, lipase from a thermotolerant Bacillus subtilis TTP-06 was purified in a stepwise manner by using ammonium sulfate precipitation and column chromatography. Thenceforth, it was subjected to sodium dodecyl sulfate- and native-polyacrylamide gel electrophoresis to check the homogeneity of the purified enzyme. The ideal substrate concentration, pH, temperature, reaction duration and lipase specificity were identified. With a yield of 11.02%, purified lipase displayed activity of 8.51 U/mg. Thenceforward, the homogeneously purified enzyme was considered to be a homo-dimer of 30 kDa subunits. Enzyme had Km and Vmax value of 9.498 mM and 19.92 mol mg-1 min-1, respectively. Additionally, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method was used to investigate the purified lipase and estimate its 3-D structure, which revealed a catalytic triad of serine, aspartate and histidine.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biotechnology, Himachal Pradesh University, SummerHill, Shimla, HP India
| | - Rakesh Kumar
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Poonam Katoch
- Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, SummerHill, Shimla, HP India
| |
Collapse
|
7
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|
8
|
Masi C, Tebiso A, Selva Kumar K. Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon 2023; 9:e12645. [PMID: 36793964 PMCID: PMC9922826 DOI: 10.1016/j.heliyon.2022.e12645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Extremozymes are innovative and robust biocatalysts produced by various microorganisms from harsh environments. As thermophilic organisms can only develop in a few places, studying them in geothermal environments has provided new insights into the origins and evolution of early life and access to significant bio-resources with potential biotechnology applications. The work aimed to isolate and identify likely multiple extracellular enzyme-producing thermophilic bacteria from an Addis Ababa landfill (Qoshe). The streaking approach was used to purify 102 isolates acquired by serial dilution and spread plate method. The isolates were morphologically and biochemically characterized. Thirty-five cellulases, 22 amylase, 17 protease, and nine lipase-producing bacteria were identified using primary screening methods. Further secondary screening using Strain safety evaluation; two bacterial strains (TQ11 and TQ46) were identified. Based on morphological and biochemical tests, they were found to be gram-positive and rod-shaped. Furthermore, molecular identification and phylogenic analysis of selected promising isolates confirmed the identity of the isolates, Paenibacillus dendritiformis (TQ11) and Anoxybacillus flavithermus (TQ46). The results indicated that, multiple extracellular enzyme-producing thermophilic bacteria isolated from a waste dumping area in Addis Ababa offer useful features for environmental sustainability in a wide range of industrial applications due to their biodegradability and specialized stability under extreme conditions, increased raw material utilization, and decreased waste.
Collapse
Affiliation(s)
- Chandran Masi
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia,Corresponding author. Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
| | - Abel Tebiso
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - K.V. Selva Kumar
- School of Chemical and Bioengineering, Dire Dawa University Institute of Technology, Dire Dawa, Ethiopia
| |
Collapse
|
9
|
Efficacy of the Immobilized Kocuria flava Lipase on Fe3O4/Cellulose Nanocomposite for Biodiesel Production from Cooking Oil Wastes. Catalysts 2022. [DOI: 10.3390/catal12090977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The increasing global demand for petroleum oils has led to a significant increase in their cost and has led to the search for renewable alternative waste resources for biodiesel synthesis and production using novel environmentally sound and acceptable methods. In the current study, Kocuria flava lipase was immobilized on Fe3O4/cellulose nanocomposite; and used as a biocatalyst for the conversion of cooking oil wastes into biodiesel through the transesterification/esterification process. The characterization of Fe3O4/cellulose nanocomposite revealed several functional groups including carboxyl (C=O) and epoxy (C-O-C) groups that act as multipoint covalent binding sites between the lipase and the Fe3O4/cellulose nanocomposite and consequently increasing lipase immobility and stability. The immobilized lipase showed a high thermo-stability as it retained about 70% of its activity at 80 °C after 30 min. The kinetics of immobilized lipase revealed that the Km and Vmax values were 0.02 mM and 32.47 U/mg protein, respectively. Moreover, the immobilized lipase showed high stability and reusability for transesterification/esterification reactions for up to four cycles with a slight decline in the enzyme activity. Furthermore, the produced biodiesel characteristics were compatible with the standards, indicating that the biodiesel obtained is doable and may be utilized in our daily life as a diesel fuel.
Collapse
|
10
|
Sundaramahalingam MA, Amrutha C, Sivashanmugam P, Rajeshbanu J. An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech 2021; 11:481. [PMID: 34790505 PMCID: PMC8557240 DOI: 10.1007/s13205-021-03003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/26/2021] [Indexed: 10/19/2022] Open
Abstract
Biodiesel is a renewable, sulfur-free, toxic-free, and low carbon fuel which possesses enhanced lubricity. Transesterification is the easiest method employed for the production of biodiesel, in which the oil is transformed into biodiesel. Biocatalyst-mediated transesterification is more advantageous than chemical process because of its non-toxic nature, the requirement of mild reaction conditions, absence of saponification, easy product recovery, and production of high-quality biodiesel. Lipases are found to be the primary enzymes in enzyme-mediated transesterification process. Currently, researchers are using lipases as biocatalyst for transesterification. Lipases are extracted from various sources such as plants, microbes, and animals. Biocatalyst-based biodiesel production is not yet commercialized due to high-cost of purified enzymes and higher reaction time for the production process. However, research works are growing in the area of various cost-effective techniques for immobilizing lipase to improve its reusability. And further reduction in the production cost of lipases can be achieved by genetic engineering techniques. The reduction in reaction time can be achieved through ultrasonic-assisted biocatalytic transesterification. Biodiesel production by enzymatic transesterification is affected by many factors. Various methods have been developed to control these factors and improve biodiesel production. This report summarizes the various sources of lipase, various production strategies for lipase and the lipase-mediated transesterification. It is fully focused on the lipase enzyme and its role in biodiesel production. It also covers the detailed explanation of various influencing factors, which affect the lipase-mediated transesterification along with the limitations and scope of lipase in biodiesel production.
Collapse
Affiliation(s)
- M. A. Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - C. Amrutha
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - P. Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - J. Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610 005 India
| |
Collapse
|
11
|
Fang Y, Zhou Y, Xin Y, Shi Y, Guo Z, Li Y, Gu Z, Ding Z, Shi G, Zhang L. Preparation and characterization of a novel thermostable lipase from Thermomicrobium roseum. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01486b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a hypothetical lipase gene from Thermomicrobium roseum DSM 5159 (GenBank: ACM04789.1) was recombinantly expressed in two system and characterized.
Collapse
Affiliation(s)
- Yakun Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yanjie Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yu Xin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yi Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zitao Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| |
Collapse
|
12
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|