1
|
Wu CY, Ding HY, Wang TY, Liu CW, Wu JY, Chang TS. Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities. J Microbiol Biotechnol 2024; 34:2693-2701. [PMID: 39467698 PMCID: PMC11729693 DOI: 10.4014/jmb.2405.05031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
The scientific community actively pursuits novel compounds with biological activities. In this context, our study utilized the predicted data mining approach (PDMA), which can efficiently screen out biotransformable precursor candidates to produce new bioactive compounds. The PDMA was applied to Bacillus megaterium tyrosinase (BmTYR) to form new bioactive hydroxyl compounds from isoxsuprine hydrochloride (isoxsuprine). The results show that isoxsuprine could be biotransformed by BmTYR to form a new compound, 3''-hydroxyisoxsuprine. 3''-Hydroxyisoxsuprine exhibited 40-fold and 10-fold higher potent antioxidant and anti-inflammation activities than the precursor, isoxsuprine. The 3''-hydroxyisoxsuprine effectively mitigates the hyperimmune response in RAW 264.7 macrophages by inhibiting the upregulation of pro-inflammatory cytokine (IL-1β and IL-6) and inflammatory enzyme COX-2 gene expression triggered by LPS stimulation. This study illustrates that PDMA is an effective strategy for screening known natural and chemical compounds and for generating new bioactive compounds through biotransformation. Our newly produced compound has potential future applications in pharmacology and biotechnology.
Collapse
Affiliation(s)
- Chien-Yu Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700301, Taiwan, Republic of China
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan, Republic of China
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115201, Taiwan, Republic of China
| | - Chun-Wei Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700301, Taiwan, Republic of China
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen County 892009, Taiwan, Republic of China
| | - Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700301, Taiwan, Republic of China
| |
Collapse
|
2
|
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4'-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int J Mol Sci 2024; 25:7152. [PMID: 39000255 PMCID: PMC11241015 DOI: 10.3390/ijms25137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,β-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.
Collapse
Affiliation(s)
| | | | - Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (P.C.); (T.J.)
| |
Collapse
|
3
|
Ibrahim SRM, Mohamed SGA, Alsaadi BH, Althubyani MM, Awari ZI, Hussein HGA, Aljohani AA, Albasri JF, Faraj SA, Mohamed GA. Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of Aspergillus sydowii. Mar Drugs 2023; 21:441. [PMID: 37623723 PMCID: PMC10455642 DOI: 10.3390/md21080441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine ecosystems. This fungus can cause aspergillosis in sea fan corals leading to sea fan mortality with subsequent changes in coral community structure. Interestingly, A. sydowi is a prolific source of distinct and structurally varied metabolites such as alkaloids, xanthones, terpenes, anthraquinones, sterols, diphenyl ethers, pyrones, cyclopentenones, and polyketides with a range of bioactivities. A. sydowii has capacity to produce various enzymes with marked industrial and biotechnological potential, including α-amylases, lipases, xylanases, cellulases, keratinases, and tannases. Also, this fungus has the capacity for bioremediation as well as the biocatalysis of various chemical reactions. The current work aimed at focusing on the bright side of this fungus. In this review, published studies on isolated metabolites from A. sydowii, including their structures, biological functions, and biosynthesis, as well as the biotechnological and industrial significance of this fungus, were highlighted. More than 245 compounds were described in the current review with 134 references published within the period from 1975 to June 2023.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Baiaan H. Alsaadi
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Maryam M. Althubyani
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Zainab I. Awari
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abrar A. Aljohani
- Pharmaceutical Care Services, Medina Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Jumanah Faisal Albasri
- Pharmacy Department, Home Health Care, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Salha Atiah Faraj
- Pharmacy Department, King Salman Medical City, MOH, Almadinah Almunawarah 11176, Saudi Arabia;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Łużny M, Kaczanowska D, Gawdzik B, Wzorek A, Pawlak A, Obmińska-Mrukowicz B, Dymarska M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022; 27:molecules27123681. [PMID: 35744806 PMCID: PMC9228445 DOI: 10.3390/molecules27123681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to select yeast strains capable of the biotransformation of selected 2′-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2′-hydroxy-2″-bromochalcone, 2′-hydroxy-3″-bromochalcone, 2′-hydroxy-4″-bromochalcone and 2′-hydroxy-5′-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2′-hydroxybromochalcones, the corresponding 2′-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Dagmara Kaczanowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
- Correspondence: ; Tel.: +48-713-205-195
| |
Collapse
|