1
|
Plummer R, Greystoke A, Naylor G, Sarker D, Anam ANMK, Prenen H, Teuwen LA, Van Cutsem E, Dekervel J, Haugk B, Ness T, Bhoi S, Jensen M, Morris T, Baumann P, Sjögren N, Tunblad K, Wallberg H, Öberg F, Evans TRJ. A Phase 1a/1b Study of Fostroxacitabine Bralpamide (Fostrox) Monotherapy in Hepatocellular Carcinoma and Solid Tumor Liver Metastases. J Hepatocell Carcinoma 2024; 11:2033-2047. [PMID: 39469286 PMCID: PMC11514655 DOI: 10.2147/jhc.s481410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose To evaluate safety, preliminary efficacy, pharmacokinetics, and pharmacodynamics, of fostroxacitabine bralpamide (fostrox, MIV-818), a novel oral troxacitabine nucleotide prodrug designed to direct exposure to the liver, while minimizing systemic toxicity. Patients and Methods Fostrox monotherapy was administered in an open-label, single-arm, first-in-human, phase 1a/1b study, in patients with hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma, or solid tumor liver metastases. The first part (1a) consisted of intra/inter-patient escalating doses (3 mg to 70 mg) QD for up to 5 days, and the second part (1b), doses of 40 mg QD for 5 days, in 21-day cycles. Safety and tolerability were evaluated by the Safety Review Committee, and efficacy was assessed every 6 weeks with CT or MRI using RECIST 1.1 and mRECIST. Results Nineteen patients were treated with fostrox. Most common adverse events (AEs) were hematological and increased AST. Grade 3 treatment related AEs (TRAE) were seen in 53% of the patients, with transient neutropenia and thrombocytopenia as the most common. No grade 5 AE was observed. Recommended Phase 2 dose of fostrox was 40 mg QD for 5 days in 21-day cycles. Preliminary efficacy showed a clinical benefit rate in the liver of 53% and stable disease (SD) as best response in 10 patients. Liver targeting with fostrox was confirmed with higher exposure of troxacitabine and its metabolites in liver compared to plasma. Systemic exposure of fostrox was generally low with troxacitabine as main analyte. Biopsies demonstrated tumor-selective, drug-induced DNA damage. Conclusion The phase 1a/1b monotherapy study of fostrox, in patients with liver tumors, showed a tumor selective effect in the liver and that 40 mg QD for 5 days in 21-day cycles is safe and tolerable. Safety and preliminary efficacy in patients with advanced HCC supports clinical development of fostrox in combination with other modes of action in HCC.
Collapse
Affiliation(s)
- Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Alastair Greystoke
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Gregory Naylor
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
- Department of Medical Oncology, Guy’s Hospital, London, UK
| | | | - Hans Prenen
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Laure-Anne Teuwen
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Eric Van Cutsem
- Department of Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Jeroen Dekervel
- Department of Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Beate Haugk
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Thomas Ness
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
3
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
4
|
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Kristen Elofson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - M.G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
5
|
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6:157. [PMID: 25954303 PMCID: PMC4407582 DOI: 10.3389/fgene.2015.00157] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Rashid M, Husain A, Shaharyar M, Mishra R, Hussain A, Afzal O. Design and synthesis of pyrimidine molecules endowed with thiazolidin-4-one as new anticancer agents. Eur J Med Chem 2014; 83:630-45. [PMID: 25010935 DOI: 10.1016/j.ejmech.2014.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
Design and synthesis of new pyrimidine derivatives clubbed with thiazolidin-4-one from 4-(2-chlorophenyl)-6-(2,4-dichlorophenyl)pyrimidin-2-amine and their in vitro anticancer activities were screened at National Cancer Institute (NCI), USA against full NCI 60 cell lines. Compound 2 (NSC: 765735) exhibited remarkable growth inhibition at single dose (10 μM) and encourage chosen for broadcast at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 μM). The compound 2 was found better quality for Lung cancer cell line (HOP-92) by viewing growth inhibition (GI50 0.52) and no cytotoxicity seen (LC50 > 100). Molecular docking study was performed using Maestro 9.0 (Schrodinger Inc. USA) to provide binding mode into binding sites of CDK2. Compound 2 could be used as a lead compound for developing new potential anticancer agents.
Collapse
Affiliation(s)
- Mohd Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.
| | - Asif Husain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.
| | - Mohammad Shaharyar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Ravinesh Mishra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Afzal Hussain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
7
|
Sendula R, Orbán E, Hudecz F, Sági G, Jablonkai I. Synthesis and cytotoxic activity of novel 5-substituted-1-(β-L-arabinofuranosyl) pyrimidine nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:482-500. [PMID: 22646088 DOI: 10.1080/15257770.2012.689410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A series of new 5-halogeno-1-(ß-L-arabinofuranosyl)uracils and their cytosine analogues were synthesized by halogenation of ara-L-uridine and ara-L-cytidine, respectively. The 5-(2-thienyl) and 5-halogenothienyl derivatives of both series were also prepared in excellent yields by Stille coupling followed by halogenation. All of these syntheses were based on benzoyl-protected derivatives. In vitro cytotoxicity experiments carried out using L1210 mouse leukemia cells showed that 5-(2-thienyl)-ara-L-uridine was the most potent compound of the new compounds; the majority of the analogues were not effective up to 200 μM concentrations.
Collapse
Affiliation(s)
- Róbert Sendula
- Institute of Organic Chemistry, Research Center of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
8
|
Thermus thermophilus nucleoside phosphorylases active in the synthesis of nucleoside analogues. Appl Environ Microbiol 2012; 78:3128-35. [PMID: 22344645 DOI: 10.1128/aem.07605-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities.
Collapse
|
9
|
Abstract
Antimetabolites are cytotoxic agents, which have been developed for more than 50 years. Which cancer patient did not receive or will not receive 5-fluorouracil or methotrexate during the evolution his or her disease? Antimetabolites are defined as interfering with the synthesis of the DNA constituents; they are structural analogues, either of purine and pyrimidine bases (or the corresponding nucleosides), or of folate cofactors, which are involved at several steps of purine and pyrimidine biosynthesis. Their first mechanism of action is, therefore, to induce depletion in nucleotides inducing in turn an inhibition of DNA replication. However, some of them are able to get inserted fraudulently into nucleic acids, inducing structural abnormalities leading to cell death by other mechanisms, including DNA breaks. We present in this paper, for the three classes of antimetabolites, both ancient and recent molecules as well as molecules still in clinical trials, without exhaustivity.
Collapse
|
10
|
Abstract
INTRODUCTION In the last few years, several new purine and pyrimidine nucleoside analogs have been synthesized and made available for both preclinical studies and clinical trials. AREAS COVERED This article summarizes recent achievements in the mechanism of action, pharmacological properties and clinical activity and toxicity as well as the emerging role of newer purine and pyrimidine nucleoside analogs potentially active in lymphoid and myeloid malignancies. A literature review was conducted from the MEDLINE database PubMed for articles in English. Publications from 2000 to October 2010 were scrutinized. The search terms used were clofarabine, nelarabine, forodesine, 8-chloroadenosine, LMP-420, azacitidine, decitabine, sapacitabine, troxacitabine, thiarabine and zebularine in conjunction with hematologic malignancies, leukemia and lymphoma. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, and American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Several new nucleoside analogs are currently under investigation in preclinical and clinical studies concerning hematological malignancies. Clofarabine, nelarabine, azacitidine and decitabine have been recently approved for the treatment of leukemias and/or myelodysplastic syndromes. Other agents including forodesine, 8-chloroadenosine, LMP-420, sapacitabine, troxacitabine, thiarabine and zebularine seem to be promising for the treatment of lymphoid and myeloid malignancies. However, definitive data from ongoing and future clinical trials will aid in better defining their status in the treatment of hematological disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| |
Collapse
|
11
|
Martínez-Montero S, Fernández S, Sanghvi YS, Gotor V, Ferrero M. Enzymatic Parallel Kinetic Resolution of Mixtures of d/l 2′-Deoxy and Ribonucleosides: An Approach for the Isolation of β-l-Nucleosides. J Org Chem 2010; 75:6605-13. [DOI: 10.1021/jo101368z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Saúl Martínez-Montero
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | - Susana Fernández
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | - Miguel Ferrero
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| |
Collapse
|
12
|
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 2009; 109:2880-93. [PMID: 19476376 DOI: 10.1021/cr900028p] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- William B Parker
- Southern Research Institute, 2000 Ninth Avenue, South Birmingham, Alabama 35205, USA.
| |
Collapse
|
13
|
Stapnes C, Gjertsen BT, Reikvam H, Bruserud Ø. Targeted therapy in acute myeloid leukaemia: current status and future directions. Expert Opin Investig Drugs 2009; 18:433-55. [DOI: 10.1517/14728220902787628] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Camilla Stapnes
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Bjørn Tore Gjertsen
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Håkon Reikvam
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Øystein Bruserud
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| |
Collapse
|